926 resultados para Genome Segmentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel technique for estimating the rank of the trajectory matrix in the local subspace affinity (LSA) motion segmentation framework is presented. This new rank estimation is based on the relationship between the estimated rank of the trajectory matrix and the affinity matrix built with LSA. The result is an enhanced model selection technique for trajectory matrix rank estimation by which it is possible to automate LSA, without requiring any a priori knowledge, and to improve the final segmentation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The human condition known as Premature Ovarian Failure (POF) is characterized by loss of ovarian function before the age of 40. A majority of POF cases are sporadic, but 10–15% are familial, suggesting a genetic origin of the disease. Although several causal mutations have been identified, the etiology of POF is still unknown for about 90% of the patients. Methodology/Principal Findings: We report a genome-wide linkage and homozygosity analysis in one large consanguineous Middle-Eastern POF-affected family presenting an autosomal recessive pattern of inheritance. We identified two regions with a LODmax of 3.26 on chromosome 7p21.1-15.3 and 7q21.3-22.2, which are supported as candidate regions by homozygosity mapping. Sequencing of the coding exons and known regulatory sequences of three candidate genes (DLX5, DLX6 and DSS1) included within the largest region did not reveal any causal mutations. Conclusions/Significance: We detect two novel POF-associated loci on human chromosome 7, opening the way to the identification of new genes involved in the control of ovarian development and function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most speciation events probably occur gradually, without complete and immediate reproductive isolation, but the full extent of gene flow between diverging species has rarely been characterized on a genome-wide scale. Documenting the extent and timing of admixture between diverging species can clarify the role of geographic isolation in speciation. Here we use new methodology to quantify admixture at different stages of divergence in Heliconius butterflies, based on whole-genome sequences of 31 individuals. Comparisons between sympatric and allopatric populations of H. melpomene, H. cydno, and H. timareta revealed a genome-wide trend of increased shared variation in sympatry, indicative of pervasive interspecific gene flow. Up to 40% of 100-kb genomic windows clustered by geography rather than by species, demonstrating that a very substantial fraction of the genome has been shared between sympatric species. Analyses of genetic variation shared over different time intervals suggested that admixture between these species has continued since early in speciation. Alleles shared between species during recent time intervals displayed higher levels of linkage disequilibrium than those shared over longer time intervals, suggesting that this admixture took place at multiple points during divergence and is probably ongoing. The signal of admixture was significantly reduced around loci controlling divergent wing patterns, as well as throughout the Z chromosome, consistent with strong selection for Müllerian mimicry and with known Z-linked hybrid incompatibility. Overall these results show that species divergence can occur in the face of persistent and genome-wide admixture over long periods of time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In image processing, segmentation algorithms constitute one of the main focuses of research. In this paper, new image segmentation algorithms based on a hard version of the information bottleneck method are presented. The objective of this method is to extract a compact representation of a variable, considered the input, with minimal loss of mutual information with respect to another variable, considered the output. First, we introduce a split-and-merge algorithm based on the definition of an information channel between a set of regions (input) of the image and the intensity histogram bins (output). From this channel, the maximization of the mutual information gain is used to optimize the image partitioning. Then, the merging process of the regions obtained in the previous phase is carried out by minimizing the loss of mutual information. From the inversion of the above channel, we also present a new histogram clustering algorithm based on the minimization of the mutual information loss, where now the input variable represents the histogram bins and the output is given by the set of regions obtained from the above split-and-merge algorithm. Finally, we introduce two new clustering algorithms which show how the information bottleneck method can be applied to the registration channel obtained when two multimodal images are correctly aligned. Different experiments on 2-D and 3-D images show the behavior of the proposed algorithms

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an information theoretic framework for image segmentation is presented. This approach is based on the information channel that goes from the image intensity histogram to the regions of the partitioned image. It allows us to define a new family of segmentation methods which maximize the mutual information of the channel. Firstly, a greedy top-down algorithm which partitions an image into homogeneous regions is introduced. Secondly, a histogram quantization algorithm which clusters color bins in a greedy bottom-up way is defined. Finally, the resulting regions in the partitioning algorithm can optionally be merged using the quantized histogram

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En aquesta tesi s’estudia el problema de la segmentació del moviment. La tesi presenta una revisió dels principals algoritmes de segmentació del moviment, s’analitzen les característiques principals i es proposa una classificació de les tècniques més recents i importants. La segmentació es pot entendre com un problema d’agrupament d’espais (manifold clustering). Aquest estudi aborda alguns dels reptes més difícils de la segmentació de moviment a través l’agrupament d’espais. S’han proposat nous algoritmes per a l’estimació del rang de la matriu de trajectòries, s’ha presenta una mesura de similitud entre subespais, s’han abordat problemes relacionats amb el comportament dels angles canònics i s’ha desenvolupat una eina genèrica per estimar quants moviments apareixen en una seqüència. L´ultima part de l’estudi es dedica a la correcció de l’estimació inicial d’una segmentació. Aquesta correcció es du a terme ajuntant els problemes de la segmentació del moviment i de l’estructura a partir del moviment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El processament d'imatges mèdiques és una important àrea de recerca. El desenvolupament de noves tècniques que assisteixin i millorin la interpretació visual de les imatges de manera ràpida i precisa és fonamental en entorns clínics reals. La majoria de contribucions d'aquesta tesi són basades en Teoria de la Informació. Aquesta teoria tracta de la transmissió, l'emmagatzemament i el processament d'informació i és usada en camps tals com física, informàtica, matemàtica, estadística, biologia, gràfics per computador, etc. En aquesta tesi, es presenten nombroses eines basades en la Teoria de la Informació que milloren els mètodes existents en l'àrea del processament d'imatges, en particular en els camps del registre i la segmentació d'imatges. Finalment es presenten dues aplicacions especialitzades per l'assessorament mèdic que han estat desenvolupades en el marc d'aquesta tesi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquesta tesi està emmarcada dins la detecció precoç de masses, un dels símptomes més clars del càncer de mama, en imatges mamogràfiques. Primerament, s'ha fet un anàlisi extensiu dels diferents mètodes de la literatura, concloent que aquests mètodes són dependents de diferent paràmetres: el tamany i la forma de la massa i la densitat de la mama. Així, l'objectiu de la tesi és analitzar, dissenyar i implementar un mètode de detecció robust i independent d'aquests tres paràmetres. Per a tal fi, s'ha construït un patró deformable de la massa a partir de l'anàlisi de masses reals i, a continuació, aquest model és buscat en les imatges seguint un esquema probabilístic, obtenint una sèrie de regions sospitoses. Fent servir l'anàlisi 2DPCA, s'ha construït un algorisme capaç de discernir aquestes regions són realment una massa o no. La densitat de la mama és un paràmetre que s'introdueix de forma natural dins l'algorisme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La tesis se centra en la Visión por Computador y, más concretamente, en la segmentación de imágenes, la cual es una de las etapas básicas en el análisis de imágenes y consiste en la división de la imagen en un conjunto de regiones visualmente distintas y uniformes considerando su intensidad, color o textura. Se propone una estrategia basada en el uso complementario de la información de región y de frontera durante el proceso de segmentación, integración que permite paliar algunos de los problemas básicos de la segmentación tradicional. La información de frontera permite inicialmente identificar el número de regiones presentes en la imagen y colocar en el interior de cada una de ellas una semilla, con el objetivo de modelar estadísticamente las características de las regiones y definir de esta forma la información de región. Esta información, conjuntamente con la información de frontera, es utilizada en la definición de una función de energía que expresa las propiedades requeridas a la segmentación deseada: uniformidad en el interior de las regiones y contraste con las regiones vecinas en los límites. Un conjunto de regiones activas inician entonces su crecimiento, compitiendo por los píxeles de la imagen, con el objetivo de optimizar la función de energía o, en otras palabras, encontrar la segmentación que mejor se adecua a los requerimientos exprsados en dicha función. Finalmente, todo esta proceso ha sido considerado en una estructura piramidal, lo que nos permite refinar progresivamente el resultado de la segmentación y mejorar su coste computacional. La estrategia ha sido extendida al problema de segmentación de texturas, lo que implica algunas consideraciones básicas como el modelaje de las regiones a partir de un conjunto de características de textura y la extracción de la información de frontera cuando la textura es presente en la imagen. Finalmente, se ha llevado a cabo la extensión a la segmentación de imágenes teniendo en cuenta las propiedades de color y textura. En este sentido, el uso conjunto de técnicas no-paramétricas de estimación de la función de densidad para la descripción del color, y de características textuales basadas en la matriz de co-ocurrencia, ha sido propuesto para modelar adecuadamente y de forma completa las regiones de la imagen. La propuesta ha sido evaluada de forma objetiva y comparada con distintas técnicas de integración utilizando imágenes sintéticas. Además, se han incluido experimentos con imágenes reales con resultados muy positivos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is a review of a study on perception and comprehension of speech using syntactic, visual and acoustic information.

Relevância:

20.00% 20.00%

Publicador: