An information theoretic framework for image segmentation
Data(s) |
2004
|
---|---|
Resumo |
In this paper, an information theoretic framework for image segmentation is presented. This approach is based on the information channel that goes from the image intensity histogram to the regions of the partitioned image. It allows us to define a new family of segmentation methods which maximize the mutual information of the channel. Firstly, a greedy top-down algorithm which partitions an image into homogeneous regions is introduced. Secondly, a histogram quantization algorithm which clusters color bins in a greedy bottom-up way is defined. Finally, the resulting regions in the partitioning algorithm can optionally be merged using the quantized histogram |
Formato |
application/pdf |
Identificador |
Rigau, J., Feixas, M., i Sbert, S. (2004). An information theoretic framework for image segmentation. International Conference on Image Processing : 2004 : ICIP '04, 2, 1193 - 1196. Recuperat 1 octubre 2010, a http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1419518 0-7803-8554-3 1522-4880 |
Idioma(s) |
eng |
Publicador |
IEEE |
Relação |
Reproducció digital del document publicat a: http://dx.doi.org/10.1109/ICIP.2004.1419518 © International Conference on Image Processing, 2004, vol. 2, p. 1193-1196 Articles publicats (D-IMA) |
Direitos |
Tots els drets reservats |
Palavras-Chave | #Algorismes computacionals #Imatges -- Segmentació #Imatges -- Processament #Imaging segmentation #Computer algorithms #Image processing |
Tipo |
info:eu-repo/semantics/article |