998 resultados para GaAs material
Resumo:
An analytical model for the spin filtering transport in a ferromagnetic-metal - Al2O3 - n-type semiconductor tunneling structure has been developed, and demonstrated that the ratio of the helicity-modulated photo-response to the chopped one is proportional to the sum of the relative asymmetry in conductance of two opposite spin-polarized tunneling channels and the MCD effect of the ferromagnetic metal film. The performed measurement in an iron-metal/Al2O3/n-type GaAs tunneling structure under the optical spin orientation has verified that all the aspects of the experimental results are very well in accordance with our model in the regime of the spin filtering. After the MCD effect of the iron film is calibrated by an independent measurement, the physical quantity of Delta G(t)/G(t) (Delta G(t) = G(t)(up arrow) - G(t)(down arrow) is the difference of the conductance between two opposite spin tunneling channels, G(t) =( G(t)(up arrow) + G(t)(down arrow))/2 the averaged tunneling conductance), which concerns us most, can be determined quantitatively with a high sensitivity in the framework of our analytical model. Copyright (c) EPLA, 2008.
Resumo:
The stability and photoemission characteristics for reflection-mode GaAs photocathodes in a demountable vacuum system have been investigated by using spectral response and x-ray photoelectron spectroscopy measurements at room temperature. We find that the shape of the spectral response curve for the cathode changes with time in the vacuum system, but after applying fresh cesium to the degraded cathode, the spectral response can almost be restored. The change and restoration of curve shape are mainly attributed to the evolution of the surface barrier. We illustrate the evolution and analyze the influence of the barrier on the spectral response of the cathode. (C) 2008 American Institute of Physics.
Resumo:
Very low threshold current density InGaAs/ GaAs quantum well laser diodes grown by molecular beam epitaxy on InGaAs metamorphic buffers are reported. The lasing wavelength of the ridge waveguide laser diode with cavity length of 1200 mm is centred at 1337.2 nm; the threshold current density is 205 A/cm(2) at room temperature under continuous-wave operation.
Resumo:
We reported the all electronic demonstration of spin injection and detection in the trilayers with hybrid structure of CoFeB/GaAs/(Ga,Mn)As (metal/insulator semiconductor) by probing the magnetoresistance at low temperature from 1.8 to 30 K. Tunneling magnetoresistance (TMR) ratios of 3.8%, 4.7%, 2.9%, and 1.4% at 1.8, 10, 20, and 30 K, respectively, were observed. Bias dependence of both the junction resistance and TMR ratio was studied systematically. V-half at which TMR drops to half of its maximum is 6.3 mV, being much smaller compared to that observed in (Ga,Mn)As/ZnSe/Fe and (Ga,Mn)As/AlAs/MnAs hybrid structures, indicating lower Fermi energy of (Ga,Mn)As.
Resumo:
The Rashba spin splitting of the minibands of coupled InAs/GaAs pyramid quantum dots is investigated using the k center dot p method and valence force field model. The Rashba splitting of the two dimensional miniband in the lateral directions is found due to the structure inversion asymmetry in the vertical direction while the miniband in the vertical direction has no Rashba spin splitting. As the space between dots increases, the Rashba coefficients decrease and the conduction-band effective mass increases. This Rashba spin splitting of the minibands will significantly affect the spin transport properties between quantum dots. (C) 2008 American Institute of Physics.
Resumo:
GaSb epilayers grown on GaAs(001) vicinal substrate misoriented towards (111) plane were studied using high-resolution x-ray diffraction (HRXRD). The results show that GaSb epilayers exhibit positive crystallographic tilt and the distribution of 60 degrees misfit dislocations (MDs) is imbalanced. The vicinal substrate also leads to the anisotropy of the mosaic structure, i.e. the lateral coherent lengths in [1 (1) over bar0] directions are larger than those in [110] directions. Furthermore, the full-width at half maximum (FWHM) of the off-axis peaks varies with the inclination angle, which is a result of different dislocation densities in the {111} glide planes.
Resumo:
A series of metamorphic high electron mobility transistors (MMHEMTs) with different V/III flux ratios are grown on GaAs (001) substrates by molecular beam epitaxy (XIBE). The samples are analysed by using atomic force microscopy (AFM), Hall measurement, and low temperature photoluminescence (PL). The optimum V/III ratio in a range from 15 to 60 for the growth of MMHEMTs is found to be around 40. At this ratio, the root mean square (RMS) roughness of the material is only 2.02 nm; a room-temperature mobility and a sheet electron density are obtained to be 10610.0cm(2)/(V.s) and 3.26 x 10(12)cm(-2) respectively. These results are equivalent to those obtained for the same structure grown on InP substrate. There are two peaks in the PL spectrum of the structure, corresponding to two sub-energy levels of the In0.53Ga0.47 As quantum well. It is found that the photoluminescence intensities of the two peaks vary with the V/III ratio, for which the reasons are discussed.
Resumo:
We have investigated the steady-state and transient optical properties of InGaAs/GaAs quantum chains and found that the photoluminescence (PL) decay time exhibits a strong photon energy dependence. It increases with the decrease of the emission energy. It is also found that the PL decay time increases with the excitation power. When the excitation power is large enough the PL decay time tends to be saturated. All these experimental results show that there is a strong carrier coupling along the chain direction in the quantum dot chain structure. The polarization PL measurements further confirm the carrier transfer process along the chain direction.
Resumo:
The dynamics of spontaneous emission from GaAs slabs with photonic crystals etched into them are investigated both theoretically and experimentally. It is found that the intensity of spontaneous emission decreases significantly and that photonic crystals significantly shorten the lifetime of emission. The mechanics of enhancement and the reduction of emission from photonic crystals are analyzed by considering the surface recombination of GaAs. The measured and calculated lifetimes agree at a surface recombination velocity of 1.88x10(5) cm/s.
Resumo:
Transmission of an electromagnetic wave from a heavily doped n-type GaAs film is studied theoretically. The calculations are performed using the two-dimensional finite-different time-domain method. From the calculations, we find the extraordinary transmission of p-polarized waves through the film with subwavelength grooves on both surfaces at mid-infrared frequencies. By determining a set of groove parameters, we optimize the transmission to as high as 55.2%. We ascribe this extraordinary transmission to the coupling of the surface-plasmon polariton modes and waveguide modes. Such an enhanced transmission device can be useful for mid-infrared wave filters, emitters, and monitors.
Resumo:
In this paper, how the dots' radius, At concentration and external electric field affect the single electron energy states in GaAs/AlxGa1-xAs spherical quantum dots are discussed in detail. Furthermore, the modification of the energy states is calculated when the difference in effective electron mass in GaAs and AlxGa1-xAs are considered. In addition, both the analytical method and the plane wave method are used in calculation and the results are compared, showing that they are in good agreement with each other. The results and methods can provide useful information for the future research and potential applications of quantum dots.
Resumo:
The properties of the wetting layer (WL) of InAs nanorings grown by droplet epitaxy have been studied. The heavy-hole (HH) and light-hole (LH) related transitions of the In(Ga)As WL were observed by reflectance difference spectroscopy. From the temperature dependent photoluminescence behavior of InAs rings, the channel for carriers to redistribute was found to be the compressed GaAs instead of the In(Ga)As layer, which strongly indicated that the wetting layer was depleted around the rings. Futhermore, a complex evolution of the WL with In deposition amount has been observed. (c) 2008 American Institute of Physics.
Resumo:
Strongly vertically coupled InAs/GaAs quantum dots (QDs) with modulation doping are investigated, and polarization dependence of two-color absorptions was observed. Analysis of photoluminescence (PL) and absorption spectra shows that s-polarized absorptions at. 10.0 and 13.4 mu m, stem from the first excited state E-1 and the second excited state E-2 in the QDs to the bound state E-InGaAs in the InGaAs spacer, respectively, whereas p-polarized absorptions at 10.0 and 8.2 mu m stem from the first excited state E-1 and the ground E-g in the QDs to the bound state E-InGaAs in the InGaAs spacer, respectively. These measurements illustrate that transitions from excited states are more sensitive to normal incidence, which are very important in designing QD infrared detector. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We have investigated the exciton spin relaxation in a GaInNAs/GaAs quantum well. The recombination from free and localized excitons is resolved on the basis of an analysis of the photoluminescence characteristics. The free exciton spin relaxation time is measured to be 192 ps at 10 K, while the localized exciton spin relaxation time is one order of magnitude longer than that of the free exciton. The dependence of the free exciton spin relaxation time on the temperature above 50 K suggests that both the D'yakonov-Perel' and the Elliot-Yafet effects dominate the spin relaxation process. The temperature independence below 50 K is considered to be due to the spin exchange interaction. The ultralong spin relaxation time of the localized excitons is explained to be due to the influence of nonradiative deep centers. (c) 2008 American Institute of Physics.
Resumo:
The electronic states of a hydrogenic donor impurity in GaAs/GaAlAs quantum wells are investigated theoretically in the framework of effective-mass envelope function theory, including the effect of Rashba spin-orbit coupling. The splits of electron energy levels are calculated. The results show that (1) the split energy of the excited state is larger than that of the ground state; (2) the split energy peak appears as the GaAs well width increases from zero; and (3) the maximum split energy reaches about 1.6 meV. Our results are useful for the application of Rashba spin-orbit coupling to photoelectric devices. (c) 2008 American Institute of Physics.