1000 resultados para GEOMETRÍA ALGEBRÁICA
Resumo:
Se estudia la didáctica de los determinantes en relación con figuras geométricas. Está dirigido al nivel de COU. Se comienza con una introducción a los determinantes a partir de las propiedades elementales, fácilmente observables en las figuras del área de un paralelogramo y del volumen de un paralepípedo, en dos y en tres dimensiones. A continuación, y a partir de estas propiedades, se introduce, de una manera axiomática, la definición de determinante, como una generalización para el caso n- dimensional. Todas las conclusiones se comprueban mediante demostraciones matemáticas.
Resumo:
Se analiza la enseñanza de la materia de matemáticas a nivel de bachillerato en España. Se comienza con la enseñanza en los años cincuenta, cuando se considera que la enseñanza matemática en nuestro país parecía razonablemente sana. La Geometría ocupaba un lugar dominante, y el cálculo infinitesimal estaba bien representado. En definitiva, la información matemática general de nuestros estudiantes era incluso superior a la de muchos otros países de Europa. Pero en la década de los sesenta empieza a vislumbrarse un cambio de rumbo. EI movimiento fue bastante general. Comenzó por USA y Francia. A algunos países con una fuerte tradición de didáctica matemática, como Rusia y Hungría, nunca llegó tan radicalmente. A España llegó con algún retraso. La nueva matemática se denominó Matemática Moderna o Nueva Matemática. Algunas de sus ideas directrices fueron: que los niños entiendan desde el principio todo lo que están haciendo, por lo cual se eliminaron tablas y memorizaciones. Las consecuencias, plasmadas legalmente en nuestros programas, han sido rotundas. A nuestros niños se les enseña las operaciones con conjuntos casi antes de que sepan hablar, lo cual ha fracasado estrepitosamente. En la mayor parte de los países donde el sistema se ha implantado, el movimiento devuelta comenzó prácticamente de inmediato. En España aún se están haciendo los últimos esfuerzos por ponerlo en práctica. Ante esta problemática se plantea que hacer. Se señala que el mal ya está hecho y sus consecuencias las seguiremos sufriendo por algún tiempo, y que la corrección de rumbo de los organismos oficiales no suele ser un proceso rápido. Pero se considera que se puede tratar de catalizar la superación de esta etapa, lo que se va realizando ya con éxito en otros países. Y mientras llega la corrección oficial se sugiere que los profesores se informen suficientemente para saber lo que convendría subrayar y soslayar en nuestros programas y textos. Que piensen que la abstracción anticipada y el rigor prematuro, aparte de ser inútiles y perjudiciales, conducirán necesariamente al hastío.
Resumo:
Se estudia la teoría de grafos en relación con el teorema de Euler. La teoría de grafos se refiere a la teoría de conjuntos relativa a las relaciones binarias de un conjunto numerable consigo mismo. Esta teoría posee un vasto campo de aplicaciones en Física, Economía, Teoría de la Información, Programación Lineal, Transportas, Psicología, e incluso en ciertos dominios del arte. Se pretende realizar un trabajo que sirva como seminario optativo para los alumnos de COU, que presente a los alumnos un teorema clásico de geometría mediante la teoría de grafos, un aspecto bastante olvidado en los programas. Se utilizan los métodos y el lenguaje de la teoría de grafos para demostrar el teorema de Euler, que liga caras, vértices y aristas de un poliedro regular. Para todo ello en primer lugar se sistematizan una serie de conceptos previos, se analizan las propiedades de distintos tipos de grafos, y por último, se realizan demostraciones.
Resumo:
Se presenta un estudio del plano y del espacio vectorial haciendo referencia a propiedades de tipo lineal, basadas en la estructura misma del espacio vectorial. Se estudian los problemas de incidencia o alineación de puntos y de intersecciones de rectas y planos y de paralelismo, y el único grupo de transformaciones, el de traslaciones. Se introducen las operaciones de suma de vectores, producto de vectores por números, y el producto escalar, que permite resolver los problemas de tipo métrico.
Resumo:
Se presentan algunas definiciones como materia de trabajo en clase tomadas de los textos de Geometría de don Pedro Puig Adam. Se estudia el interés que manifiestan los alumnos cuando se les plantean ejercicios de reconstrucción de deducciones, igualdades incompletas, etc. Y en este caso, se aplica a una colección de definiciones donde se omiten ciertos vocablos para que se pueda establecer una conexión lógica para completarlas.
Resumo:
En diversos países se han realizado diferentes estudios y una reestructuración de los programas de ciencias del bachillerato para adaptarlos a la realidad existente experimentos, entre los problemas de investigación operativa y como más simples los de programación lineal, hay ejercicios lo suficientemente sencillos que pueden ser incluidos entre las cuestiones prácticas que se simultanean con el estudio de la geometría analítica de la línea recta La mayor parte de las decisiones diarias sobre cuestiones de carácter práctico se relacionan con variables o parámetros ligados por acotaciones o desigualdades: nuestro nivel de vida requiere unos ingresos no inferiores a una cifra. Esta cifra limita la cuantía de nuestro presupuesto familiar, dentro del que está la manutención, etcétera. Es cierto que gran parte de estos temas se resuelven con una estrategia dictada por la intuición, que si no cumple las condiciones óptimas satisface las exigencias vitales las ciencias sociales y la industria presentan frecuentemente problemas sobre variables ligadas de modos muy diversos. Con ello, lo único que se pretende es demostrar a los alumnos de bachillerato ejemplos cotidianos que se pueden resolver fácilmente.
Resumo:
Se ha intentado ver la teoría de los conjuntos en matemáticas como algo nuevo procedente de la matemática moderna , que se puso de moda y se introdujo en esta asignatura. Pero para ver que esto no es así, queremos ver el papel que juega la teoría de los conjuntos en la matemática elemental. El armazón matemático está constituido por teoremas, definiciones, clasificaciones y postulados. En definitiva, si ponemos algún ejemplo de aritmética o de geometría y no sólo nos referiremos a los conjuntos copulativos, sino también a los conjuntos naturales disyuntivos. De lo que se trata es de demostrar que toda la matemática tiene un entramado de conjunto tan relacionado que es imposible entenderlas sin entender los conjuntos al estar cualquier elemento de la misma relacionado por categorías y subcategorías de conjuntos y subconjuntos.
Resumo:
Partiendo de la observación de la naturaleza, podemos atribuir a toda figura rígida diferentes posiciones, ligada cada una de ella a instantes diferentes; cada par de estas posiciones nos marcan un movimiento seguido por la figura. En realidad prescindiremos de todo tiempo para llegar a la noción general de movimiento inicial y final. Entonces tenemos un conjunto de pares ordenados (F, Fï) (F posición inicial y Fï posición final) de tal forma que a todo punto A de F le podemos hacer corresponder A de Fï siendo uno el homólogo de otro, su movimiento y su identidad. A partir de aquí desarrollaremos al teoría de la semejanza en un triángulo siguiendo el teorema de Tales de la homotecia. De gran importancia en matemáticas. Todo ello, hay que interpretarlo con la prudencia, pues no olvidemos que aún siguiendo las directrices de muchos matemáticos que consideran a la geometría como el estudio del grupo de los movimientos, no se trata de desterrar los clásicos métodos euclídeos, que al fin han sido la base de nuestros conocimientos geométricos.
Resumo:
Sea O un punto fijo del plan. Podemos establecer una correspondencia entre los puntos del plano y el conjunto de los vectores libres del plano. Un sistema de referencia del plano está constituido por un punto O y dos vectores u y v, que sean linealmente independientes dados en un cierto orden y si tenemos un par de números, existe siempre un punto que tenga esas coordenadas y éste, está unívocamente determinado, ya que si dos puntos tienen las mismas coordenadas, tienen el mismo vector y, por lo tanto, coinciden. El punto de referencia O sería el vector nulo y a un punto distinto del punto cero le asignamos el vector OA y diremos que este vector es el vector de posición del punto A. En el plano las rectas pueden ser paralelas, cortarse o no coincidir. La relación que existe en el plano entre ellas es afín pues siempre estarán en el mismo plano.
Resumo:
Repaso histórico de la evolución del estudio y descubrimientos en el ámbito de las matemáticas, en especial, el periodo que abarca desde mediados del siglo XVII hasta bien entrado el siglo XVIII, centrándose en la geometría y el cálculo de variaciones.
Resumo:
Se trata la evolución de la didáctica de la matemática en el bachillerato español entre los años 1903 y 1963, en la que se distinguen dos etapas o tendencias, y las diferentes reformas legislativas y normativas durante este período. También se hace mención de la evolución de otras disciplinas que integran la de matemáticas, como la geometría, y el perfeccionamiento de las técnicas y métodos de enseñanza.
Resumo:
Se presentan algunas de las aplicaciones prácticas sobre la cuestión teórica y conceptual de la proporcionalidad de magnitudes. Primeramente se hace una breve reseña histórica y se precisa en concepto de magnitud. A continuación, se precisan algunos puntos de interés: las magnitudes escalares, las magnitudes escalares continuas y sus propiedades, la divisibilidad de una magnitud, la proporcionalidad entre magnitudes, la caracterización de la proporcionalidad, la medición indirecta de cantidades, la proporción entre cantidades, y la proporción numérica. El objetivo es iniciar a los alumnos de bachillerato en los primeros pasos de la Matemática elemental.
Resumo:
Notas sobre como introducir a los alumnos en la geometría de las moléculas mediante la observación directa, utilizando globos para visualizar los orbitales atómicos en las clases de química.
Resumo:
Estudio acerca de las relaciones métricas entre los triángulos, sobre la base de lecciones explicadas a los alumnos de tercer curso del Instituto Ramiro de Maeztu, en la Cátedra de Metodología y Didáctica de la Matemática. Algunas de las relaciones que se explican mediante diagramas y operaciones matemáticas son: si sobre los lados de un triángulo escaleno construimos triángulos semejantes al dado, el triángulo construido sobre el lado mayor es mayor, igual o menor, que la suma de los otros dos, según que el triángulo dado sea obtusángulo, rectángulo u acutángulo. También se estudia el teorema de la altura: en un triángulo rectángulo, la altura relativa de la hipotenusa es medio proporcional entre los dos segmentos en que descompone a ésta; o el teorema de Pitágoras, que señala que el cuadrado construido sobre la hipotenusa es equivalente a la suma de los cuadrados construidos sobre los catetos. Por último se hace referencia a las aplicaciones de las relaciones métricas estudiadas en la resolución de ejercicios.
Resumo:
Se analiza la óptica paraxial dentro del sistema educativo español en la década de los años sesenta. Al ponerse en vigor con el curso 1960-61 las nuevas normas sobre Preuniversitario, a él pasó la Óptica geométrica, que se venía explicando en el Selectivo de las facultades de Ciencias. La disposición al efecto señala que su explicación se debe hacer utilizando la notación contenida en las normas DIN 1,335. Pero los escasos libros españoles de Óptica apenas han usado estas normas, por lo que se realizó este estudio a modo de compendio. Se señala que no se tiene la pretensión de que estos apuntes puedan ser la sustitución de un libro de texto del Bachillerato, ya que son demasiado densos para los alumnos. Se deja a los profesores la tarea de exponerla de forma adecuada a los alumnos, de ese nivel y edad. Por tanto el contenido es meramente matemático, y se obvia cualquier observación de tipo didáctico. Si se presenta el contenido acompañado de numerosas demostraciones matemáticas y experimentos. De hecho se considera imprescindible que los alumnos vean, acompañando a la explicación del profesor en clase, una colección de experiencias para que se den cuenta de que las cuestiones que se explican corresponden a realidades físicas. En líneas generales los principales puntos tratados son la óptica geométrica, los sistemas ópticos centrados, la óptica paraxial de los sistemas centrados, las ecuaciones de correspondencia y los sistemas compuestos.