987 resultados para F-f intensities
Efficient extreme UV harmonics generated from picosecond laser pulse interactions with solid targets
Resumo:
The generation of high harmonics created during the interaction of a 2.5 ps, 1053 nm laser pulse with a solid target has been recorded for intensities up to 10(19) W cm(-2). Harmonic orders up to the 68th at 15.5 nm in first order have been observed with indications up to the 75th at 14.0 nm in second-order diffraction. No differences in harmonic emission between s and p polarization of the laser beam were observed. The power of the 38th high harmonic at 27.7 nm is estimated to be 24 MW.
Resumo:
Neutron time of flight signals have been observed with a high resolution neutron spectrometer using the petawatt arm of the Vulcan laser facility at Rutherford Appleton Laboratory from plastic sandwich targets containing a deuterated layer. The neutron spectra have two elements: a high-energy component generated by beam-fusion reactions and a thermal component around 2.45 MeV. The ion temperatures calculated from the neutron signal width clearly demonstrate a dependence on the front layer thickness and are significantly higher than electron temperatures measured under similar conditions. The ion heating process is intensity dependent and is not observed with laser intensities on target below 10(20) W cm(-2). The measurements are consistent with an ion instability driven by electron perturbations.
Resumo:
We report measurements of ultrahigh magnetic fields produced during intense (similar to10(20) Wcm(-2) mum(2)) laser interaction experiments with solids. We show that polarization measurements of high-order vuv laser harmonics generated during the interaction (up to the 15th order) suggest the existence of magnetic field strengths of 0.7+/-0.1 GG in the overdense plasma. Measurements using higher order harmonics indicate that denser regions of the plasma can be probed. This technique may be useful for measurements of multi-GG level magnetic fields which are predicted to occur at even higher intensities.
Resumo:
Investigations of Li-7(p,n)Be-7 reactions using Cu and CH primary and LiF secondary targets were performed using the VULCAN laser [C.N. Danson , J. Mod. Opt. 45, 1653 (1997)] with intensities up to 3x10(19) W cm(-2). The neutron yield was measured using CR-39 plastic track detector and the yield was up to 3x10(8) sr(-1) for CH primary targets and up to 2x10(8) sr(-1) for Cu primary targets. The angular distribution of neutrons was measured at various angles and revealed a relatively anisotropic neutron distribution over 180degrees that was greater than the error of measurement. It may be possible to exploit such reactions on high repetition, table-top lasers for neutron radiography. (C) 2004 American Institute of Physics.
Resumo:
Plasma mirrors are devices capable of switching very high laser powers on subpicosecond time scales with a dynamic range of 20–30 dB. A detailed study of their performance in the near-field of the laser beam is presented, a setup relevant to improving the pulse contrast of modern ultrahigh power lasers ~TW–PW!. The conditions under which high reflectivity can be achieved and focusability of the reflected beam retained are identified. At higher intensities a region of high specular reflectivity with rapidly decreasing focusability was observed, suggesting that specular reflectivity alone is not an adequate guide to the ideal range of plasma mirror operation. It was found that to achieve high reflectivity with negligible phasefront distortion of the reflected beam the inequality csDt,lLaser must be met (cs : sound speed, Dt: time from plasma formation to the peak of the pulse!. The achievable contrast enhancement is given by the ratio of plasma mirror reflectivity to cold reflectivity.
Resumo:
We report the first systematic observations of relativistic self-phase-modulation (RSPM) due to the interaction of a high intensity laser pulse with plasma. The plasma was produced in front of a solid target by the prepulse of a 100 TW laser beam. RSPM was observed by monitoring the spectrum of the harmonics generated by the intense laser pulse during the interaction. The multipeaked broadened spectral structure produced by RSPM was studied in plasmas with different density scale lengths for laser interactions at intensities up to 3.0x1019 W cm(-2) (a=p(osc)/m(e)c=4.7). The results are compared with calculated spectra and agreement is obtained.
Resumo:
Nuclear activation has been observed in materials exposed to the ablated plasma generated from high intensity laser-solid interactions (at focused intensities up to 2x10(19) W/cm(2)) and is produced by protons having energies up to 30 MeV. The energy spectrum of the protons is determined from these activation measurements and is found to be consistent with other ion diagnostics. The possible development of this technique for
Resumo:
We present images of the source of extreme ultraviolet (XUV) harmonic emission at a wavelength of 220 Angstrom from the interaction of a 20 TW, 1.053 mu m Nd:glass laser beam focused to intensities up to 4x10(18) W cm(-2) onto a solid target. From these measurements we determine an upper limit to the source size and brightness of the harmonic emission to show its efficacy as a novel source of short-pulse, coherent XUV radiation. We also demonstrate the empirical scaling of the harmonic generation efficiency with irradiance up to 10(19) W mu m(2) cm(-2), and extrapolate to estimate the possible source brightness at higher irradiances. These source brightnesses are compared to those available from an x-ray laser system. (C) 1997 American Institute of Physics.
Resumo:
We report high harmonic generation from a 248.6-nm KrF laser giving harmonic orders up to the 37th (67 Angstrom) in a helium gas jet and the 35th (71 Angstrom) in neon, for laser intensities up to 4 x 10(17) W/cm(2) in 380-fs pulses. These observations are interpreted using theoretical modeling that identifies the ion species He+, Ne+, and Ne2+ as the sources of the highest harmonics.
Resumo:
Comparisons between experimentally measured time-dependent electron energy distribution functions and optical emission intensities are reported for low-frequency (100 and 400 kHz) radio-frequency driven discharges in argon. The electron energy distribution functions were measured with a time-resolved Langmuir probe system. Time-resolved optical emissions of argon resonance lines at 687.1 and 750.4 nm were determined by photon-counting methods. Known ground-state and metastable-state excitation cross sections were used along with the measured electron energy distribution functions to calculate the time dependence of the optical emission intensity. It was found that a calculation using only the ground-state cross sections gave the best agreement with the time dependence of the measured optical emission. Time-dependent electron density, electron temperature, and plasma potential measurements are also reported.
Resumo:
The recent adiabatic saddle-point method of Shearer et al. [ Phys. Rev. A 84 033409 (2011)] is applied to study strong-field photodetachment of H- by few-cycle linearly polarized laser pulses of frequencies near the two-photon detachment threshold. The behavior of the saddle points in the complex-time plane for a range of laser parameters is explored. A detailed analysis of the influence of laser intensities [(2×1011)–(6.5 × 1011) W/cm2], midinfrared laser wavelengths (1800–2700 nm), and various values of the carrier envelope phase (CEP) on (i) three-dimensional probability detachment distributions, (ii) photoangular distributions (PADs), (iii) energy spectra, and (iv) momentum distributions are presented. Examination of the probability distributions and PADs reveal main lobes and jetlike structures. Bifurcation phenomena in the probability distributions and PADs are also observed as the wavelength and intensity increase. Our simulations show that the (i) probability distributions, (ii) PADs, and (iii) energy spectra are extremely sensitive to the CEP and thus measuring such distributions provides a useful tool for determining this phase. The symmetrical properties of the electron momentum distributions are also found to be strongly correlated with the CEP and this provides an additional robust method for measuring the CEP of a laser pulse. Our calculations further show that for a three-cycle pulse inclusion of all eight saddle points is required in the evaluation of the transition amplitude to yield an accurate description of the photodetachment process. This is in contrast to recent results for a five-cycle pulse.
Resumo:
<p> The recollision model has been applied to separate the probability for double ionization into contributions from electron-impact ionization and electron-impact excitation for intensities at which the dielectronic interaction is important for generating double ionization. For a wavelength of 780 am, electron-impact excitation dominates just above the threshold intensity for double ionization, approximate to 1.2 x 10(14) W cm(-2), with electron-impact ionization becoming more important for higher intensities. For a wavelength of 390 nm, the ratio between electron-impact ionization and electron-impact excitation remains fairly constant for all intensities above the threshold intensity for double ionization, approximate to 6 x 10(14) W cm(-2). The results point to an explanation of the experimental results, but more detailed calculations on the behaviour of excited He+ ions are required.</p>
Resumo:
Using the R-matrix Floquet theory we have carried out non-perturbative, ab initio one- and two-colour calculations of the multiphoton ionization of magnesium with the laser frequencies chosen such that the initial state of the atom is resonantly coupled with autoionizing resonances of the atom. Good agreement is obtained with previous calculations in the low-intensity regimes. The single-photon ionization from the 3s3p P excited state of magnesium has been studied in the vicinity of the 3p S autoionizing resonance at non-perturbative laser intensities. Laser-induced degenerate states (LIDS) are observed for modest laser intensities. By adding a second laser which resonantly couples the 3p S = and 3p3d P autoionizing levels, we show that, due to the small width of the 3p3d P state, LIDS occur between this state and the 3s3p P state at intensities of the first laser below 10 W cm . We next investigate the case in which the first laser induces a resonant two-photon coupling between the ground state and the 3p S autoionizing state, while the second laser again resonantly couples the respective 3p S and 3p3d P autoionizing states. At weak intensities, our calculations compare favourably with recent experimental data and calculations. We show that when the intensity of the first laser is increased, the effect of an additional autoionizing state, the 4s5s S state, becomes significant. This state is coupled to the 3p3d P autoionizing level by one photon, inducing a triply resonant processes. We show that LIDS occur among the three autoionizing levels and we discuss their effect on the decay rate of the ground state. We consider dressed two- and three-level atoms which can be used to model the results of our calculations.
Resumo:
The ultrashort duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen's University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 109Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4±0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.
Resumo:
A review of the proton radiography technique will be presented. This technique employs laser-accelerated laminar bunches of protons to diagnose the temporal and spatial characteristic of the electric and magnetic fields generated during high-intensity laser-plasma interactions. The remarkable temporal and spatial resolution that this technique can achieve (of the order of a picosecond and a few microns respectively) candidates this technique as the preferrable one, if compared to other techniques, to probe high intensity laser-matterinteractions.