981 resultados para Double-step reaching
Resumo:
Owing to a few unique advantages, the double-dot single electron transistor has been proposed as an alternative detector for charge states. In this work, we present a further study for its signal-to-noise property, based on a full analysis of the setup configuration symmetry. It is found that the effectiveness of the double-dot detector can approach that of an ideal detector, if the symmetric capacitive coupling is taken into account. The quantum measurement efficiency is also analyzed by comparing the measurement time with the measurement-induced dephasing time.
Resumo:
The ground state binding energy and the average interparticle distances for a hydrogenic impurity in double quantum dots with Gaussian confinement potential are studied by the variational method. The probability density of the electron is calculated, too. The dependence of the binding energy on the impurity position is investigated for GaAs quantum dots. The result shows that the binding energy has a minimum as a function of the distance between the two quantum dots when the impurity is located at the center of one quantum dot or at the center of the edge of one quantum dot. When the impurity is located at the center of the two dots, the binding energy decreases monotonically. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In the framework of effective mass envelope function theory, the electronic structures of GaAs/AlxGa1-xAs quantum double rings(QDRs) are studied. Our model can be used to calculate the electronic structures of quantum wells, wires, dots, and the single ring. In calculations, the effects due to the different effective masses of electrons and holes in GaAs and AlxGa1-xAs and the valence band mixing are considered. The energy levels of electrons and holes are calculated for different shapes of QDRs. The calculated results are useful in designing and fabricating the interrelated photoelectric devices. The single electron states presented here are useful for the study of the electron correlations and the effects of magnetic fields in QDRs.
Resumo:
We have carried out a theoretical study of double-delta-doped InAlAs/InGaAs/InP high electron mobility transistor (HEMT) by means of the finite differential method. The electronic states in the quantum well of the HEMT are calculated self-consistently. Instead of boundary conditions, initial conditions are used to solve the Poisson equation. The concentration of two-dimensional electron gas (2DEG) and its distribution in the HEMT have been obtained. By changing the doping density of upper and lower impurity layers we find that the 2DEG concentration confined in the channel is greatly affected by these two doping layers. But the electrons depleted by the Schottky contact are hardly affected by the lower impurity layer. It is only related to the doping density of upper impurity layer. This means that we can deal with the doping concentrations of the two impurity layers and optimize them separately. Considering the sheet concentration and the mobility of the electrons in the channel, the optimized doping densities are found to be 5 x 10(12) and 3 x 10(12) cm(-2) for the upper and lower impurity layers, respectively, in the double-delta-doped InAlAs/InGaAs/InP HEMTs.
Resumo:
It is important to acquire the composition of Si1-xGex layer, especially that with high Ge content, epitaxied on Si substrate. Two nondestructive examination methods, double crystals X-ray diffraction (DCXRD) and micro-Raman measurement, were introduced comparatively to determine x value in Si1-xGex: layer, which show that while the two methods are consistent with each other when x is low, the results obtained from double crystals X-ray diffraction are not credible due to the large strain relaxation occurring in Si1-xGex layers when Ge content is higher than about 20%. Micro-Raman measurement is more appropriate for determining high Ge content than DCXRD.
Resumo:
Wafer bonding between p-Si and an n-InP-based InGaAsP multiple quantum well (MQW) wafer was achieved by a direct wafer bonding method. In order to investigate the strain at different annealing temperatures, four pre-bonded pairs were selected, and pair one was annealed at 150 degrees C, pair two at 250 degrees C, pair three at 350 degrees C, and pair four at 450 degrees C, respectively. The macroscopical strains on the bonded epitaxial layer include two parts, namely the internal strain and the strain caused by the mismatching of the crystalline orientation between InP (100) and Si (100). These strains were measured by the X-ray double crystalline diffraction, and theoretical calculations of the longitudinal and perpendicular thermal strains at different annealing temperatures were calculated using the bi-metal thermostats model, both the internal strain and the thermal strain increase with the annealing temperature. Normal thermal stress and the elastic biaxial thermal strain energy were also calculated using this model. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We investigate the effect of rapid thermal annealing on InGaNAs/GaAs quantum wells. At optimized annealing temperatures and times, the greatest enhancement of the photoluminescence intensity is obtained by a special two-step annealing process. To identify the mechanism affecting the material quality during the rapid thermal annealing, differential temperature analysis is applied, and temperature- and power-dependent photoluminescence is carried out on the samples annealed under different conditions. Our experiment reveals that some composition redistribution or other related ordering process may occur in the quantum-well layer during annealing. Annealing at a lower temperature for a long time primarily can remove defects and dislocations while annealing at a higher temperature for a short time primarily homogenizes the composition in the quantum wells.
Resumo:
We report the photocurrent response in a double barrier structure with quantum dots-quantum well inserted in central well. When this quantum dots-quantum well hybrid heterostructure is biased beyond + 1 or -I V, the photocurrent response manifests itself as a steplike enhancement, increasing linearly with the light intensity. Most probably, at proper bias condition, the pulling down of the X minimum of GaAs at the outgoing interface of the emitter barrier by the photovoltaic effect in GaAs QW will initiate the r,-X-X tunneling at much lower bias as compared with that in the dark. That gives rise to the observed photocurrent response. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Based on the introduction of the traditional mathematical models of neurons in general-purpose neurocomputer, a novel all-purpose mathematical model-Double synaptic weight neuron (DSWN) is presented, which can simulate all kinds of neuron architectures, including Radial-Basis-Function (RBF) and Back-propagation (BP) models, etc. At the same time, this new model is realized using hardware and implemented in the new CASSANN-II neurocomputer that can be used to form various types of neural networks with multiple mathematical models of neurons. In this paper, the flexibility of the new model has also been described in constructing neural networks and based on the theory of Biomimetic pattern recognition (BPR) and high-dimensional space covering, a recognition system of omni directionally oriented rigid objects on the horizontal surface and a face recognition system had been implemented on CASSANN-H neurocomputer. The result showed DSWN neural network has great potential in pattern recognition.
Resumo:
Four well-resolved peaks with very narrow linewidths were found in the D-band and G'-band features of double-walled carbon nanotubes (DWNTs). This fact implies the occurrence of additional van Hove singularities (vHSs) in the joint density of states (JDOS) of DWNTs, which is consistent with theoretical calculations. According to their peak frequencies and theoretical analysis, the two outer peaks can be deduced to originate from a strong coupling between the two constituent tubes of commensurate DWNTs and the two inner peaks were curvature-related and assigned to originate from the two tubes with a weak coupling. This observation and elucidation constitute the first Raman evidence for atomic correlation and the resulting electronic structure change of the two constituent tubes in DWNTs. This result opens the possibility of predicting and modifying the electronic properties of DWNTs for their electronic applications.
Resumo:
Based on a new finite-difference scheme and Runge-Kutta method together with transparent boundary conditions (TBCs), a novel beam propagation method to model step-index waveguides with tilt interfaces is presented. The modified scheme provides an precies description of the tilt interface of the nonrectangular waveguide structure, showing a much better efficiency and accuracy comparing with the previously presented formulas.
Resumo:
We have studied the equilibrium and nonequilibrium electronic transports through a double quantum dot coupled to leads in a symmetrical parallel configuration in the presence of both the inter- and the intradot Coulomb interactions. The influences of the interdot interaction and the difference between dot levels on the local density of states (LDOS) and the differential conductance are paid special attention. We find an interesting zero-bias maximum of the differential conductance induced by the interdot interaction, which can be interpreted in terms of the LDOS of the two dots. Due to the presence of the interdot interaction, the LDOS peaks around the dot levels epsilon(i) are split, and as a result, the most active energy level which supports the transport is shifted near to the Fermi level of the leads in the equilibrium situation. (c) 2006 American Institute of Physics.
Resumo:
The spin-polarized tunneling current through a double barrier resonant tunneling diode (RTD) made with a semimagnetic semiconductor is studied theoretically. The calculated spin-polarized current and polarization degree are in agreement with recent experimental results. It is predicted that the polarization degree can be modulated continuously from + 1 to - 1 by changing the external voltage such that the quasi-confined spin-up and spin-down energy levels shift downwards from the Fermi level to the bottom of the conduction band. The RTD with low potential barrier or the tunneling through the second quasi-confined state produces larger spin-polarized current. Furthermore a higher magnetic field enhances the polarization degree of the tunneling current. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Selectively photo-excited C-V spectroscopy has been measured in an In0.5Ga0.5As quantum dots (QDs)-embedded, three barrier-two well heterostructure. By comparing with a theoretical capacitance model, the pure capacitive contribution from In0.5Ga0.5As QDs, due to tunnelling coupling between In0.5Ga0.5As QDs and In0.18Ga0.82As quantum well, has been used to obtain the density of charges from photo-excited In0.5Ga0.5As QDs in a very straightforward manner.
Resumo:
A new finite-difference scheme is presented for the second derivative of a semivectorial field in a step-index optical waveguide with tilt interfaces. The present scheme provides an accurate description of the tilt interface of the nonrectangular structure. Comparison with previously presented formulas shows the effectiveness of the present scheme.