891 resultados para Cognitive decline
Resumo:
Much interest now focuses on the use of the contingent valuation method (CVM) to assess non-use value of environmental goods. The paper reviews recent literature and highlights particular problems of information provision and respondent knowledge, comprehension and cognition. These must be dealt with by economists in designing CVM surveys for eliciting non-use values. Cognitive questionnaire design methods are presented which invoke concepts from psychology and tools from cognitive survey design (focus groups and verbal reports) to reduce a complex environmnetal good into a meaningful commodity that can be valued by respondents in a contingent market. This process is illustrated with examples from the authors' own research valuing alternative afforestation programmes. -Authors
Resumo:
The cognitive reflection test (CRT) is a short measure of a person's ability to resist intuitive response tendencies and to produce a normatively correct response, which is based on effortful reasoning. Although the CRT is a very popular measure, its psychometric properties have not been extensively investigated. A major limitation of the CRT is the difficulty of the items, which can lead to floor effects in populations other than highly educated adults. The present study aimed at investigating the psychometric properties of the CRT applying item response theory analyses (a two-parameter logistic model) and at developing a new version of the scale (the CRT-long), which is appropriate for participants with both lower and higher levels of cognitive reflection. The results demonstrated the good psychometric properties of the original, as well as the new scale. The validity of the new scale was also assessed by measuring correlations with various indicators of intelligence, numeracy, reasoning and decision-making skills, and thinking dispositions. Moreover, we present evidence for the suitability of the new scale to be used with developmental samples. Finally, by comparing the performance of adolescents and young adults on the CRT and CRT-long, we report the first investigation into the development of cognitive reflection.
Resumo:
This paper presents a thorough performance analysis of dual-hop cognitive amplify-and-forward (AF) relaying networks under spectrum-sharing mechanism over independent non-identically distributed (i.n.i.d.) 􀀀 fading channels. In order to guarantee the quality-of-service (QoS) of primary networks, both maximum tolerable peak interference power Q at the primary users (PUs) and maximum allowable transmit power P at secondary users (SUs) are considered to constrain transmit power at the cognitive transmitters. For integer-valued fading parameters, a closed-form lower bound for the outage probability (OP) of the considered networks is obtained. Moreover, assuming arbitrary-valued fading parameters, the lower bound in integral form for the OP is derived. In order to obtain further insights on the OP performance, asymptotic expressions for the OP at high SNRs are derived, from which the diversity/coding gains and the diversity-multiplexing gain tradeoff (DMT) of the secondary network can be readily deduced. It is shown that the diversity gain and also the DMT are solely determined by the fading parameters of the secondary network whereas the primary network only affects the coding gain. The derived results include several others available in previously published works as special cases, such as those for Nakagami-m fading channels. In addition, performance evaluation results have been obtained by Monte Carlo computer simulations which have verified the accuracy of the theoretical analysis.
Resumo:
In this paper, we study a two-phase underlay cognitive relay network, where there exists an eavesdropper who can overhear the message. The secure data transmission from the secondary source to secondary destination is assisted by two decode-and-forward (DF) relays. Although the traditional opportunistic relaying technique can choose one relay to provide the best secure performance, it needs to continuously have the channel state information (CSI) of both relays, and may result in a high relay switching rate. To overcome these limitations, a secure switch-and-stay combining (SSSC) protocol is proposed where only one out of the two relays is activated to assist the secure data transmission, and the secure relay switching occurs when the relay cannot support the secure communication any longer. This security switching is assisted by either instantaneous or statistical eavesdropping CSI. For these two cases, we study the system secure performance of SSSC protocol, by deriving the analytical secrecy outage probability as well as an asymptotic expression for the high main-to-eavesdropper ratio (MER) region. We show that SSSC can substantially reduce the system complexity while achieving or approaching the full diversity order of opportunistic relaying in the presence of the instantaneous or statistical eavesdropping CSI.
Resumo:
Those living with an acquired brain injury often have issues with fatigue due to factors resulting from the injury. Cognitive impairments such as lack of memory, concentration and planning have a great impact on an individual’s ability to carry out general everyday tasks, which subsequently has the effect of inducing cognitive fatigue. Moreover, there is difficulty in assessing cognitive fatigue, as there are no real biological markers that can be measured. Rather, it is a very subjective effect that can only be diagnosed by the individual. Consequently, the traditional way of assessing cognitive fatigue is to use a self-assessment questionnaire that is able to determine contributing factors. State of the art methods to evaluate cognitive! fa tigue employ cognitive tests in order to analyse performance on predefined tasks. However, one primary issue with such tests is that they are typically carried out in a clinical environment, therefore do not have the ability to be utilized in situ within everyday life. This paper presents a smartphone application for the evaluation of fatigue, which can be used daily to track cognitive performance in order to assess the influence of fatigue.
Resumo:
Introduction
Mild cognitive impairment (MCI) has clinical value in its ability to predict later dementia. A better understanding of cognitive profiles can further help delineate who is most at risk of conversion to dementia. We aimed to (1) examine to what extent the usual MCI subtyping using core criteria corresponds to empirically defined clusters of patients (latent profile analysis [LPA] of continuous neuropsychological data) and (2) compare the two methods of subtyping memory clinic participants in their prediction of conversion to dementia.
Methods
Memory clinic participants (MCI, n = 139) and age-matched controls (n = 98) were recruited. Participants had a full cognitive assessment, and results were grouped (1) according to traditional MCI subtypes and (2) using LPA. MCI participants were followed over approximately 2 years after their initial assessment to monitor for conversion to dementia.
Results
Groups were well matched for age and education. Controls performed significantly better than MCI participants on all cognitive measures. With the traditional analysis, most MCI participants were in the amnestic multidomain subgroup (46.8%) and this group was most at risk of conversion to dementia (63%). From the LPA, a three-profile solution fit the data best. Profile 3 was the largest group (40.3%), the most cognitively impaired, and most at risk of conversion to dementia (68% of the group).
Discussion
LPA provides a useful adjunct in delineating MCI participants most at risk of conversion to dementia and adds confidence to standard categories of clinical inference.
Resumo:
Children with Prader-Willi syndrome often exhibit challenging behavior in response to changes to routine. This phenomenon has been linked to a deficit in task switching ability which has been observed in children with the syndrome. TASTER is a cognitive training game which is being designed with input from a group of children with Prader- Willi syndrome, which aims to train task switching ability and thus reduce associated challenging behavior.
Resumo:
Reasoning that is deliberative and reflective often requires the inhibition of intuitive responses. The Cognitive Reflection Test (CRT) is designed to assess people’s ability to suppress incorrect heuristic responses in favour of deliberation. Correct responding on the CRT predicts performance on a range of tasks in which intuitive processes lead to incorrect responses, suggesting indirectly that CRT performance is related to cognitive control. Yet little is known about the cognitive processes underlying performance on the CRT. In the current research, we employed a novel mouse tracking mjavascript:void(0);ethodology to capture the time-course of reasoning on the CRT. Analysis of mouse cursor trajectories revealed that participants were initially drawn towards the incorrect (i.e., intuitive) option even when the correct (deliberative) option was ultimately chosen. Conversely, participants were not attracted to the correct option when they ultimately chose the incorrect intuitive one. We conclude that intuitive processes are activated automatically on the CRT and must be inhibited in order to respond correctly. When participants responded intuitively, there was no evidence that deliberative reasoning had become engaged.
Secure D2D Communication in Large-Scale Cognitive Cellular Networks: A Wireless Power Transfer Model
Resumo:
In this paper, we investigate secure device-to-device (D2D) communication in energy harvesting large-scale cognitive cellular networks. The energy constrained D2D transmitter harvests energy from multiantenna equipped power beacons (PBs), and communicates with the corresponding receiver using the spectrum of the primary base stations (BSs). We introduce a power transfer model and an information signal model to enable wireless energy harvesting and secure information transmission. In the power transfer model, three wireless power transfer (WPT) policies are proposed: 1) co-operative power beacons (CPB) power transfer, 2) best power beacon (BPB) power transfer, and 3) nearest power beacon (NPB) power transfer. To characterize the power transfer reliability of the proposed three policies, we derive new expressions for the exact power outage probability. Moreover, the analysis of the power outage probability is extended to the case when PBs are equipped with large antenna arrays. In the information signal model, we present a new comparative framework with two receiver selection schemes: 1) best receiver selection (BRS), where the receiver with the strongest channel is selected; and 2) nearest receiver selection (NRS), where the nearest receiver is selected. To assess the secrecy performance, we derive new analytical expressions for the secrecy outage probability and the secrecy throughput considering the two receiver selection schemes using the proposed WPT policies. We presented Monte carlo simulation results to corroborate our analysis and show: 1) secrecy performance improves with increasing densities of PBs and D2D receivers due to larger multiuser diversity gain; 2) CPB achieves better secrecy performance than BPB and NPB but consumes more power; and 3) BRS achieves better secrecy performance than NRS but demands more instantaneous feedback and overhead. A pivotal conclusion- is reached that with increasing number of antennas at PBs, NPB offers a comparable secrecy performance to that of BPB but with a lower complexity.
Resumo:
Both genetic factors and life experiences appear to be important in shaping dogs' responses in a test situation. One potentially highly relevant life experience may be the dog's training history, however few studies have investigated this aspect so far. This paper briefly reviews studies focusing on the effects of training on dogs' performance in cognitive tasks, and presents new, preliminary evidence on trained and untrained pet dogs' performance in an 'unsolvable task'. Thirty-nine adult dogs: 13 trained for search and rescue activities (S&R group), 13 for agility competition (Agility group) and 13 untrained pets (Pet group) were tested. Three 'solvable' trials in which dogs could obtain the food by manipulating a plastic container were followed by an 'unsolvable' trial in which obtaining the food became impossible. The dogs' behaviours towards the apparatus and the people present (owner and researcher) were analysed. Both in the first 'solvable' and in the 'unsolvable' trial the groups were comparable on actions towards the apparatus, however differences emerged in their human-directed gazing behaviour. In fact, results in the 'solvable' trial, showed fewer S&R dogs looking back at a person compared to agility dogs, and the latter alternating their gaze between person and apparatus more frequently than pet dogs. In the unsolvable trial no difference between groups emerged in the latency to look at the person however agility dogs looked longer at the owner than both pet and S&R dogs; whereas S&R dogs exhibited significantly more barking (always occurring concurrently to looking at the person or the apparatus) than both other groups. Furthermore, S&R dogs alternated their gaze between person and apparatus more than untrained pet dogs, with agility dogs falling in between these two groups. Thus overall, it seems that the dogs' human-directed communicative behaviours are significantly influenced by their individual training experiences. © 2009 Elsevier B.V. All rights reserved.