995 resultados para Classification tests


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this study was todo a statistical analysis of ecological type from optical satellite data, using Tipping's sparse Bayesian algorithm. This thesis uses "the Relevence Vector Machine" algorithm in ecological classification betweenforestland and wetland. Further this bi-classification technique was used to do classification of many other different species of trees and produces hierarchical classification of entire subclasses given as a target class. Also, we carried out an attempt to use airborne image of same forest area. Combining it with image analysis, using different image processing operation, we tried to extract good features and later used them to perform classification of forestland and wetland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider active sampling to label pixels grouped with hierarchical clustering. The objective of the method is to match the data relationships discovered by the clustering algorithm with the user's desired class semantics. The first is represented as a complete tree to be pruned and the second is iteratively provided by the user. The active learning algorithm proposed searches the pruning of the tree that best matches the labels of the sampled points. By choosing the part of the tree to sample from according to current pruning's uncertainty, sampling is focused on most uncertain clusters. This way, large clusters for which the class membership is already fixed are no longer queried and sampling is focused on division of clusters showing mixed labels. The model is tested on a VHR image in a multiclass classification setting. The method clearly outperforms random sampling in a transductive setting, but cannot generalize to unseen data, since it aims at optimizing the classification of a given cluster structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel image classification scheme for benthic coral reef images that can be applied to both single image and composite mosaic datasets. The proposed method can be configured to the characteristics (e.g., the size of the dataset, number of classes, resolution of the samples, color information availability, class types, etc.) of individual datasets. The proposed method uses completed local binary pattern (CLBP), grey level co-occurrence matrix (GLCM), Gabor filter response, and opponent angle and hue channel color histograms as feature descriptors. For classification, either k-nearest neighbor (KNN), neural network (NN), support vector machine (SVM) or probability density weighted mean distance (PDWMD) is used. The combination of features and classifiers that attains the best results is presented together with the guidelines for selection. The accuracy and efficiency of our proposed method are compared with other state-of-the-art techniques using three benthic and three texture datasets. The proposed method achieves the highest overall classification accuracy of any of the tested methods and has moderate execution time. Finally, the proposed classification scheme is applied to a large-scale image mosaic of the Red Sea to create a completely classified thematic map of the reef benthos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tämän tutkielman tavoitteena on selvittää Venäjän, Slovakian, Tsekin, Romanian, Bulgarian, Unkarin ja Puolan osakemarkkinoiden heikkojen ehtojen tehokkuutta. Tämä tutkielma on kvantitatiivinen tutkimus ja päiväkohtaiset indeksin sulkemisarvot kerättiin Datastreamin tietokannasta. Data kerättiin pörssien ensimmäisestä kaupankäyntipäivästä aina vuoden 2006 elokuun loppuun saakka. Analysoinnin tehostamiseksi dataa tutkittiin koko aineistolla, sekä kahdella aliperiodilla. Osakemarkkinoiden tehokkuutta on testattu neljällä tilastollisella metodilla, mukaan lukien autokorrelaatiotesti ja epäparametrinen runs-testi. Tavoitteena on myös selvittääesiintyykö kyseisillä markkinoilla viikonpäiväanomalia. Viikonpäiväanomalian esiintymistä tutkitaan käyttämällä pienimmän neliösumman menetelmää (OLS). Viikonpäiväanomalia on löydettävissä kaikilta edellä mainituilta osakemarkkinoilta paitsi Tsekin markkinoilta. Merkittävää, positiivista tai negatiivista autokorrelaatiota, on löydettävissä kaikilta osakemarkkinoilta, myös Ljung-Box testi osoittaa kaikkien markkinoiden tehottomuutta täydellä periodilla. Osakemarkkinoiden satunnaiskulku hylätään runs-testin perusteella kaikilta muilta paitsi Slovakian osakemarkkinoilla, ainakin tarkastellessa koko aineistoa tai ensimmäistä aliperiodia. Aineisto ei myöskään ole normaalijakautunut minkään indeksin tai aikajakson kohdalla. Nämä havainnot osoittavat, että kyseessä olevat markkinat eivät ole heikkojen ehtojen mukaan tehokkaita

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tämän tutkielman tavoitteena on selvittää mitkä riskitekijät vaikuttavat osakkeiden tuottoihin. Arvopapereina käytetään kuutta portfoliota, jotka ovat jaoteltu markkina-arvon mukaan. Aikaperiodi on vuoden 1987 alusta vuoden 2004 loppuun. Malleina käytetään pääomamarkkinoiden hinnoittelumallia, arbitraasihinnoitteluteoriaa sekä kulutuspohjaista pääomamarkkinoiden hinnoittelumallia. Riskifaktoreina kahteen ensimmäiseen malliin käytetään markkinariskiä sekä makrotaloudellisia riskitekijöitä. Kulutuspohjaiseen pääomamarkkinoiden hinnoinoittelumallissa keskitytään estimoimaan kuluttajien riskitottumuksia sekä diskonttaustekijää, jolla kuluttaja arvostavat tulevaisuuden kulutusta. Tämä työ esittelee momenttiteorian, jolla pystymme estimoimaan lineaarisia sekä epälineaarisia yhtälöitä. Käytämme tätä menetelmää testaamissamme malleissa. Yhteenvetona tuloksista voidaan sanoa, että markkinabeeta onedelleen tärkein riskitekijä, mutta löydämme myös tukea makrotaloudellisille riskitekijöille. Kulutuspohjainen mallimme toimii melko hyvin antaen teoreettisesti hyväksyttäviä arvoja.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We tested whether we could teach individuals to behave more charismatically, andwhether changes in charisma affected leader outcomes. In Study 1, a mixed-design fieldexperiment, we randomly assigned 34 middle-level managers to a control or anexperimental group. Three months later, we reassessed the managers using theircoworker ratings (Time 1 raters = 343; Time 2 raters = 321). In Study 2, a within-subjectslaboratory experiment, we videotaped 41 MBA participants giving a speech. We thentaught them how to behave more charismatically, and they redelivered the speech6 weeks later. Independent assessors (n = 135) rated the speeches. Results from thestudies indicated that the training had significant effects on ratings of leader charisma(mean D = .62) and that charisma had significant effects on ratings of leaderprototypicality and emergence................................................................................................................................

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: Managing patients with alcohol dependence includes assessment for heavy drinking, typically by asking patients. Some recommend biomarkers to detect heavy drinking but evidence of accuracy is limited. METHODS: Among people with dependence, we assessed the performance of disialo-carbohydrate-deficient transferrin (%dCDT, ≥1.7%), gamma-glutamyltransferase (GGT, ≥66 U/l), either %dCDT or GGT positive, and breath alcohol (> 0) for identifying 3 self-reported heavy drinking levels: any heavy drinking (≥4 drinks/day or >7 drinks/week for women, ≥5 drinks/day or >14 drinks/week for men), recurrent (≥5 drinks/day on ≥5 days) and persistent heavy drinking (≥5 drinks/day on ≥7 consecutive days). Subjects (n = 402) with dependence and current heavy drinking were referred to primary care and assessed 6 months later with biomarkers and validated self-reported calendar method assessment of past 30-day alcohol use. RESULTS: The self-reported prevalence of any, recurrent and persistent heavy drinking was 54, 34 and 17%. Sensitivity of %dCDT for detecting any, recurrent and persistent self-reported heavy drinking was 41, 53 and 66%. Specificity was 96, 90 and 84%, respectively. %dCDT had higher sensitivity than GGT and breath test for each alcohol use level but was not adequately sensitive to detect heavy drinking (missing 34-59% of the cases). Either %dCDT or GGT positive improved sensitivity but not to satisfactory levels, and specificity decreased. Neither a breath test nor GGT was sufficiently sensitive (both tests missed 70-80% of cases). CONCLUSIONS: Although biomarkers may provide some useful information, their sensitivity is low the incremental value over self-report in clinical settings is questionable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabajo se divide en tres partes: contextualización, estado del arte en evaluación de la usabilidad en dispositivos móviles y propuesta y validación de un método que combina eyetracker de sobremesa y dispositivos móviles. El trabajo culmina con un estudio experimental con un doble propósito: realizar un primer estudio de la validez del método y analizar empíricamente cómo sacarle el máximo rendimiento tratando en todo momento de equipararlo al uso real de un dispositivo físico.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Luokittelujärjestelmää suunniteltaessa tarkoituksena on rakentaa systeemi, joka pystyy ratkaisemaan mahdollisimman tarkasti tutkittavan ongelma-alueen. Hahmontunnistuksessa tunnistusjärjestelmän ydin on luokitin. Luokittelun sovellusaluekenttä on varsin laaja. Luokitinta tarvitaan mm. hahmontunnistusjärjestelmissä, joista kuvankäsittely toimii hyvänä esimerkkinä. Myös lääketieteen parissa tarkkaa luokittelua tarvitaan paljon. Esimerkiksi potilaan oireiden diagnosointiin tarvitaan luokitin, joka pystyy mittaustuloksista päättelemään mahdollisimman tarkasti, onko potilaalla kyseinen oire vai ei. Väitöskirjassa on tehty similaarisuusmittoihin perustuva luokitin ja sen toimintaa on tarkasteltu mm. lääketieteen paristatulevilla data-aineistoilla, joissa luokittelutehtävänä on tunnistaa potilaan oireen laatu. Väitöskirjassa esitetyn luokittimen etuna on sen yksinkertainen rakenne, josta johtuen se on helppo tehdä sekä ymmärtää. Toinen etu on luokittimentarkkuus. Luokitin saadaan luokittelemaan useita eri ongelmia hyvin tarkasti. Tämä on tärkeää varsinkin lääketieteen parissa, missä jo pieni tarkkuuden parannus luokittelutuloksessa on erittäin tärkeää. Väitöskirjassa ontutkittu useita eri mittoja, joilla voidaan mitata samankaltaisuutta. Mitoille löytyy myös useita parametreja, joille voidaan etsiä juuri kyseiseen luokitteluongelmaan sopivat arvot. Tämä parametrien optimointi ongelma-alueeseen sopivaksi voidaan suorittaa mm. evoluutionääri- algoritmeja käyttäen. Kyseisessä työssä tähän on käytetty geneettistä algoritmia ja differentiaali-evoluutioalgoritmia. Luokittimen etuna on sen joustavuus. Ongelma-alueelle on helppo vaihtaa similaarisuusmitta, jos kyseinen mitta ei ole sopiva tutkittavaan ongelma-alueeseen. Myös eri mittojen parametrien optimointi voi parantaa tuloksia huomattavasti. Kun käytetään eri esikäsittelymenetelmiä ennen luokittelua, tuloksia pystytään parantamaan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Development of three classification trees (CT) based on the CART (Classification and Regression Trees), CHAID (Chi-Square Automatic Interaction Detection) and C4.5 methodologies for the calculation of probability of hospital mortality; the comparison of the results with the APACHE II, SAPS II and MPM II-24 scores, and with a model based on multiple logistic regression (LR). Methods: Retrospective study of 2864 patients. Random partition (70:30) into a Development Set (DS) n = 1808 and Validation Set (VS) n = 808. Their properties of discrimination are compared with the ROC curve (AUC CI 95%), Percent of correct classification (PCC CI 95%); and the calibration with the Calibration Curve and the Standardized Mortality Ratio (SMR CI 95%). Results: CTs are produced with a different selection of variables and decision rules: CART (5 variables and 8 decision rules), CHAID (7 variables and 15 rules) and C4.5 (6 variables and 10 rules). The common variables were: inotropic therapy, Glasgow, age, (A-a)O2 gradient and antecedent of chronic illness. In VS: all the models achieved acceptable discrimination with AUC above 0.7. CT: CART (0.75(0.71-0.81)), CHAID (0.76(0.72-0.79)) and C4.5 (0.76(0.73-0.80)). PCC: CART (72(69- 75)), CHAID (72(69-75)) and C4.5 (76(73-79)). Calibration (SMR) better in the CT: CART (1.04(0.95-1.31)), CHAID (1.06(0.97-1.15) and C4.5 (1.08(0.98-1.16)). Conclusion: With different methodologies of CTs, trees are generated with different selection of variables and decision rules. The CTs are easy to interpret, and they stratify the risk of hospital mortality. The CTs should be taken into account for the classification of the prognosis of critically ill patients.