850 resultados para CUDA (Arquitetura de computador)
Resumo:
Dissertação apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Arquitetura e Urbanismo
Resumo:
Dissertação apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Arquitetura e Urbanismo
Resumo:
Dissertação apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Arquitetura e Urbanismo
Resumo:
Dissertação apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Arquitetura e Urbanismo
Resumo:
Dissertação apresentada à Universidade Fernando Pessoa como partes dos requisitos para a obtenção do grau de Mestre em Engenharia Informática, ramo de Sistemas de Informação e Multimédia
Resumo:
57 hojas : ilustraciones.
Resumo:
BACKGROUND: Many analyses of microarray association studies involve permutation, bootstrap resampling and cross-validation, that are ideally formulated as embarrassingly parallel computing problems. Given that these analyses are computationally intensive, scalable approaches that can take advantage of multi-core processor systems need to be developed. RESULTS: We have developed a CUDA based implementation, permGPU, that employs graphics processing units in microarray association studies. We illustrate the performance and applicability of permGPU within the context of permutation resampling for a number of test statistics. An extensive simulation study demonstrates a dramatic increase in performance when using permGPU on an NVIDIA GTX 280 card compared to an optimized C/C++ solution running on a conventional Linux server. CONCLUSIONS: permGPU is available as an open-source stand-alone application and as an extension package for the R statistical environment. It provides a dramatic increase in performance for permutation resampling analysis in the context of microarray association studies. The current version offers six test statistics for carrying out permutation resampling analyses for binary, quantitative and censored time-to-event traits.
Resumo:
Esta comunicação está inserida no desenvolvimento de um projecto de investigação que procura compreender a forma como os professores de matemática podem integrar o uso de materiais tecnológicos em benefício da aprendizagem dos alunos. O projecto centra-se essencialmente nos materiais electrónicos que acompanham os manuais escolares, CD-Roms, eBooks, portais, filmes e conjuntos de outras actividades que apelam ao uso do computador. Procura-se compreender o papel que estes materiais desempenham no processo de ensino aprendizagem, nomeadamente na forma como os professores se apropriam desses materiais e o uso que fazem dos mesmos na sala de aula. Procurar-se-á apresentar nesta comunicação um breve enquadramento teórico do tema em estudo indicando as principais opções assumidas pelos autores.
Resumo:
Este trabajo se centra en la enseñanza y aprendizaje de la distribución normal en un curso introductorio de estadística en la Universidad, y se fundamenta en un marco teórico que plantea el significado institucional y personal de los objetos matemáticos. En particular, se describe el diseño de una experiencia de enseñanza de la distribución normal apoyada en el uso del ordenador y se analizan los avances, dificultades y errores que presentan los alumnos durante el desarrollo de dicha experiencia. En el estudio se presta especial atención a todo lo que implica en la enseñanza de estadística la introducción del computador. Pretendemos aportar información válida sobre la enseñanza/aprendizaje de la estadística en cursos universitarios, que pueda ser completada y ampliada en futuras investigaciones.
Resumo:
A través de varias experiencias, sencillas y fáciles de desarrollar en el aula de clase, se inducirá a los estudiantes para que reconozcan la forma como varían, directa e inversamente dos magnitudes, de tal forma, que logren caracterizarla s; luego con los datos obtenidos de la práctica y con la ayuda de los programas para computador (Excel, Geogebra y TI-NspireCas) se encontrará la tendencia de los datos, acercándolos al concepto de modelación matemática.
Resumo:
A Geometria Analítica é parte integrante dos conteúdos a serem trabalhados na Educação Básica. Além disso, os conceitos trabalhados na Educação Básica são aprofundados nos componentes curriculares dos cursos de graduação das ciências exatas tais como Engenharia, Ciências da Computação, Arquitetura, Matemática, Física, etc. Seu estudo é relevante, pois é uma ferramenta importante para o Cálculo Diferencial e Integral e é uma das principais referências em um primeiro curso de Álgebra Linear. Este trabalho tem por objetivo apresentar um estudo histórico e epistemológico das primeiras contribuições da Geometria. É importante que o professor discuta os acontecimentos históricos ao trabalhar com os conteúdos da Geometria Analítica, propor aos alunos os problemas matemáticos que originaram os conceitos da Geometria Analítica e possibilite ao aluno a construção do conhecimento e não apenas para a resolução de algoritmos.
Resumo:
This article documents the addition of 512 microsatellite marker loci and nine pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Alcippe morrisonia morrisonia, Bashania fangiana, Bashania fargesii, Chaetodon vagabundus, Colletes floralis, Coluber constrictor flaviventris, Coptotermes gestroi, Crotophaga major, Cyprinella lutrensis, Danaus plexippus, Fagus grandifolia, Falco tinnunculus, Fletcherimyia fletcheri, Hydrilla verticillata, Laterallus jamaicensis coturniculus, Leavenworthia alabamica, Marmosops incanus, Miichthys miiuy, Nasua nasua, Noturus exilis, Odontesthes bonariensis, Quadrula fragosa, Pinctada maxima, Pseudaletia separata, Pseudoperonospora cubensis, Podocarpus elatus, Portunus trituberculatus, Rhagoletis cerasi, Rhinella schneideri, Sarracenia alata, Skeletonema marinoi, Sminthurus viridis, Syngnathus abaster, Uroteuthis (Photololigo) chinensis, Verticillium dahliae, Wasmannia auropunctata, and Zygochlamys patagonica. These loci were cross-tested on the following species: Chaetodon baronessa, Falco columbarius, Falco eleonorae, Falco naumanni, Falco peregrinus, Falco subbuteo, Didelphis aurita, Gracilinanus microtarsus, Marmosops paulensis, Monodelphis Americana, Odontesthes hatcheri, Podocarpus grayi, Podocarpus lawrencei, Podocarpus smithii, Portunus pelagicus, Syngnathus acus, Syngnathus typhle,Uroteuthis (Photololigo) edulis, Uroteuthis (Photololigo) duvauceli and Verticillium albo-atrum. This article also documents the addition of nine sequencing primer pairs and sixteen allele specific primers or probes for Oncorhynchus mykiss and Oncorhynchus tshawytscha; these primers and assays were cross-tested in both species.
Resumo:
In this paper, we propose a multi-camera application capable of processing high resolution images and extracting features based on colors patterns over graphic processing units (GPU). The goal is to work in real time under the uncontrolled environment of a sport event like a football match. Since football players are composed for diverse and complex color patterns, a Gaussian Mixture Models (GMM) is applied as segmentation paradigm, in order to analyze sport live images and video. Optimization techniques have also been applied over the C++ implementation using profiling tools focused on high performance. Time consuming tasks were implemented over NVIDIA's CUDA platform, and later restructured and enhanced, speeding up the whole process significantly. Our resulting code is around 4-11 times faster on a low cost GPU than a highly optimized C++ version on a central processing unit (CPU) over the same data. Real time has been obtained processing until 64 frames per second. An important conclusion derived from our study is the scalability of the application to the number of cores on the GPU. © 2011 Springer-Verlag.
Resumo:
Background: Modern cancer research often involves large datasets and the use of sophisticated statistical techniques. Together these add a heavy computational load to the analysis, which is often coupled with issues surrounding data accessibility. Connectivity mapping is an advanced bioinformatic and computational technique dedicated to therapeutics discovery and drug re-purposing around differential gene expression analysis. On a normal desktop PC, it is common for the connectivity mapping task with a single gene signature to take >2h to complete using sscMap, a popular Java application that runs on standard CPUs (Central Processing Units). Here, we describe new software, cudaMap, which has been implemented using CUDA C/C++ to harness the computational power of NVIDIA GPUs (Graphics Processing Units) to greatly reduce processing times for connectivity mapping.
Results: cudaMap can identify candidate therapeutics from the same signature in just over thirty seconds when using an NVIDIA Tesla C2050 GPU. Results from the analysis of multiple gene signatures, which would previously have taken several days, can now be obtained in as little as 10 minutes, greatly facilitating candidate therapeutics discovery with high throughput. We are able to demonstrate dramatic speed differentials between GPU assisted performance and CPU executions as the computational load increases for high accuracy evaluation of statistical significance.
Conclusion: Emerging 'omics' technologies are constantly increasing the volume of data and information to be processed in all areas of biomedical research. Embracing the multicore functionality of GPUs represents a major avenue of local accelerated computing. cudaMap will make a strong contribution in the discovery of candidate therapeutics by enabling speedy execution of heavy duty connectivity mapping tasks, which are increasingly required in modern cancer research. cudaMap is open source and can be freely downloaded from http://purl.oclc.org/NET/cudaMap.
Resumo:
How can GPU acceleration be obtained as a service in a cluster? This question has become increasingly significant due to the inefficiency of installing GPUs on all nodes of a cluster. The research reported in this paper is motivated to address the above question by employing rCUDA (remote CUDA), a framework that facilitates Acceleration-as-a-Service (AaaS), such that the nodes of a cluster can request the acceleration of a set of remote GPUs on demand. The rCUDA framework exploits virtualisation and ensures that multiple nodes can share the same GPU. In this paper we test the feasibility of the rCUDA framework on a real-world application employed in the financial risk industry that can benefit from AaaS in the production setting. The results confirm the feasibility of rCUDA and highlight that rCUDA achieves similar performance compared to CUDA, provides consistent results, and more importantly, allows for a single application to benefit from all the GPUs available in the cluster without loosing efficiency.