967 resultados para Apical leakage


Relevância:

10.00% 10.00%

Publicador:

Resumo:

针对CO_2埋存后可能存在的逃逸问题进行了分析, 在对ABAQUS商用软件进行二次开发的基础上, 针对各个因素进行了计算; 并对简单情况进行了理论推导, 验证了数值模型的正确性.考虑到CO_2逃逸过程中可能发生相态变化, 数值模拟时分别采用理想气体状态方程和范德华方程以对结果进行比较, 结果表明, 在盖层均匀和通常的气藏条件下, CO_2完全渗漏需要l5xl0~4年以上; 盖层含井或有裂缝时会导致CO_2快速逃逸, 完全逃逸在lxl0~4年左右, 在选址时应该尽量避免

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本研究通过粗枝云杉不同种群进行的温室半控制试验,采用植物生态学、生理学和生物化学的研究方法,系统地研究了粗枝云杉不同种群抗旱性的生长、形态、生理和生化机理,并结合有关研究进行综合分析,得出主要研究结论如下: 1.粗枝云杉对干旱胁迫的综合反应 粗枝云杉在干旱胁迫下的适应机制为:(1)相对生长速率及植株结构的调整:干旱胁迫下虽然植株相对生长速率显著降低,且有相对较多的生物量向根部分配,但并未发现细根/总根比增加。(2)粗枝云杉对干旱胁迫的光合作用表现为:干旱胁迫显著地降低了控制的理想条件下的气体交换,但干旱胁迫对PSII最大光化学效率(Fv/Fm)没有影响,表明干旱并未影响到光合机构。(3)干旱还影响了很多生理生化过程,包括渗透调解物质(游离脯氨酸)、膜脂过氧化产物、脱落酸(ABA)含量的增加,以及保护酶活性的升高。这些结果证明植物遭受干旱胁迫后发生了一系列的形态、生理和生化响应,这些变化能提高干旱时期植物的存活和生长能力。 2.粗枝云杉不同种群对干旱胁迫反应的种群差异 粗枝云杉三个种群-干旱种群(四川丹巴和甘肃迭部)和湿润种群(四川黑水)对干旱适应不同,这种不同应归因于它们采用的用水策略不同:在水分良好和干旱胁迫条件下,受试种群在相对生长速率和水分利用效率(WUE)方面都表现出显著的种群间差异。与湿润种群相比,干旱种群在两种水分条件下有更高的WUE。粗枝云杉不同种群的碳同位素组分(δ13C)只在干旱胁迫下有显著差异,并且这种差异在水分良好时比干旱胁迫条件下小,说明生理响应和干旱适应性之间的关系受植物内部抗旱机制和外部环境条件(如水分可利用性)或两者互作效应的影响。这些结果说明干旱种群和湿润种群所采用的用水策略不同。干旱种群有更强的抗旱能力,采用的是节水型的用水策略,而湿润种群抗旱能力较弱,采用的是耗水型的用水策略。 3. 遮荫对粗枝云杉不同种群抗旱性影响 干旱胁迫显著降低了全光条件下叶相对含水量(RWC)、相对生长速率、气体交换参数、PSII的有效量子产量(Y),提高了非光化学猝灭效率(qN)、水分利用效率、脯氨酸(PRO)积累、脱落酸(ABA)含量及保护酶活性。然而这种变化在遮荫条件下不明显。我们得出结论适度遮荫降低了干旱对植物的胁迫作用。另一方面,在干旱条件下,与湿润种群相比,干旱种群抗旱性更强,表现在干旱种群净光合速率与单位重量上叶氮含量(Nmass)降低较少。另外,干旱种群表现出更为敏感的气孔导度,更高的热耗散能力(qN)能力、用水效率、ABA积累、保护酶活性,以及更低的总用水量、相对生长速率。这一结果表明这两种群采用不同的生理策略对干旱和遮荫做出反应。许多生长和生理反应差异与这两个种群原产地气候条件相适应。 4. 外源脱落酸(ABA)喷施对粗枝云杉不同种群抗旱性影响 外源ABA喷施在干旱和水分良好条件下均不同程度地提高了根/茎比,表明根和茎对ABA敏感程度不同。实验结果还表明,外源ABA喷施对这两个种群在干旱胁迫期间影响不同。干旱胁迫期间,伴随着ABA喷施,湿润种群净光合速率(A)显著降低,而干旱种群净光合速率变化不明显。另一方面,外源ABA喷施显著提高了干旱条件下干旱种群的单位叶面积重(LMA)、根/茎比、细根/总根(Ft)比、水分利用效率(WUE)、ABA含量, 以及保护酶活性。然而,外源ABA喷施对湿润种群的上述测定指标没有显著影响。这一结果表明干旱种群对外源ABA喷施更为敏感, 反应在更大的气孔导度降低,更高的生物量可塑性,及更高的水分利用效率、ABA含量和保护酶活性。综上所述,我们得出结论,粗枝云杉对外源ABA敏感性因种群的不同而不同。该研究结果可为两个明显不同种群在适应分化方面提供强有力的证据。 Arid or semi-arid land covers more than half of China's land territory. In arid systems, severe shortages of soil water often coincide with periods of high temperatures and high solar radiation, producing multiple stresses on plant performance. Protection from high radiation loads in shaded microenvironments during drought may compensate for a loss of productivity due to reduced irradiance when water is available. Additionally, ABA, a well-known stress-inducible plant hormone, has long been studied as a potential mediator for induction of drought tolerance in plants. Picea asperata Mast., which is one of the most important tree species used for the production of pulp wood and timber, is a prime reforestation species in western China. In this experiment, different population of P. asperata were used as experiment material to study the adaptability to drought stress and population differences in adaptabiliy, and the effects of shade and exogenous abscisic acid (ABA) application on the drought tolerance. Our results cold provide a strong theoretical evidence and scientific direction for the afforestation, and rehabilitation of ecosystem in the arid and semi-arid area, and provide a strong evidence for adaptive differentiation of different populations, and so may be used as criteria for species selection and tree improvement. The results are as follows: 1. A large set of parallel response to drought stress Drought stress caused pronounced inhibition of the growth and increased relatively dry matter allocation into the root; drought stress also caused pronounced inhibition of photosynthesis, while drought showed no effects on the maximal quantum yield of PSII photochemistry (Fv/Fm) in dark-adapted leaves, indicating that drought had no effects on the primary photochemistry of PSII. However, in light-adapted leaves, drought reduced the quantum yield of PSII electron transport (Y) and increased the non-photochemical quenching (qN). Drought also affected many physiological and biochemical processes, including increases in superoxide dismutase (SOD), ascorbate peroxidase (APX) activities, malondialdehyde and ABA content. These results demonstrate that there are a large set of parallel changes in the morphological, physiological and biochemical responses when plants are exposed to drought stress; these changes may enhance the capability of plants to survive and grow during drought periods. 2. Difference in adaptation to drought stress between contrasting populations of Picea asperata There were significant population differences in growth, dry matter allocation and water use efficiency. Compared with the wet climate population (Heishui), the dry climate population (Dan ba and Jiebu) showed higher LMA, fine root/total root ratio and water use efficiency under drought-stressed treatments. The results suggested that there were different water-use strategies between the dry population and the wet population. The dry climate population with higher drought tolerance may employ a conservative water-use strategy, whereas the wet climate population with lower drought tolerance may employ a prodigal water-use strategy. These variations in drought responses may be used as criteria for species selection and tree improvement. 3. The effects of shade on the drought tolerance For both populations tested, drought resulted in lower needle relative water content (RWC), relative growth rate (RGR), gas exchange parameters and effective PSII quantum yield (Y), and higher non-photochemical quenching (qN), water use efficiency (WUE), proline (PRO) and abscisic acid (ABA) accumulation, superoxide dismutase (SOD), ascorbate peroxidase (APX) activities as well as malondialdehyde (MDA) levels and electrolyte leakage in sun plants, whereas these changes were not significant in shade plants. Our study results implied that shade, applied together with drought, ameliorated the detrimental effects of drought. On the other hand, compared with the wet climate population, the dry climate population was more tolerant to drought in the sun treatment, as indicated by less decreases in A and mass-based leaf nitrogen content (Nmass), more responsive stomata, greater capacity for non-radiative dissipation of excitation energy as heat (analysed by qN), and higher WUE,higher level of antioxidant enzyme activities,higher ABA accumulation as well as lower MDA content and electrolyte leakage. Many of the differences in growth and physiological responses reported here are consistent with the climatic differences between the locations of the populations of P. asperata. 4. The effects of exogenous abscisic acid (ABA) application on the drought tolerance For both populations tested, exogenous ABA application increased root/shoot ratio (Rs) under well-watered and drought-stressed conditions, indicating that there was differential sensitivity to ABA in the roots and shoots. However, it appeared that ABA application affected the two P. asperata populations very differently during drought. CO2 assimilation rate (A) was significantly decreased in the wet climate population, but only to a minor extent in the dry climate population following ABA application during soil drying. On the other hand, ABA application significantly decreased stomatal conductance (gs), transpiration rate (E) and malondialdehyde (MDA) content, and significantly increased leaf mass per area (LMA), Rs, fine root/total root ratio (Ft), water use efficiency (WUE), ABA contents, superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) activities under drought condition in the dry climate population, whereas ABA application did not significantly affect these parameters in the wet population plants. The results clearly demonstrated that the dry climate population was more responsive to ABA application than the wet climate population, as indicated by the strong stomata closure and by greater plasticity of LMA and biomass allocation, as well as by higher WUE, ABA content and anti-oxidative capacity to defense against oxidative stress, possibly predominantly by APX. We concluded that sensitivity to exogenous ABA application is population dependent in P. asperata. Our results provide strong evidence for adaptive differentiation between populations of P. asperata.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

常绿阔叶林以其富饶的生物资源、丰富的生物多样性和巨大的生态与环境效益引起了人们越来越大的重视,它的研究已成为国际植被科学界关注的主题之一。我国分布着世界上面积最大的亚热带常绿阔叶林,在世界植被中具有重要地位,它的分布表现出明显的地带性差异,存在着多样的植物群系及其对应的气候特征。但是在植物功能性状领域,与全球范围其它生物群系相比,常绿阔叶林物种的研究较少,其功能性状间、功能性状与环境间的关系尚不清晰。 本研究以常绿阔叶林木本植物的当年生小枝为对象,试图从小枝水平上的生物量分配格局、叶片大小与数量的权衡关系、小枝茎的构型效应、叶片元素化学计量学,以及小枝大小的成本与效益分析等方面,较为系统地揭示小枝水平上的植物功能性状间及其与气候间的关系。因此,在华西雨屏带内部的不同纬度设置峨眉-青城-雷波-平武的温度梯度进行比较,并对有降水差异的川西南偏湿性(雷波)与偏干性常绿阔叶林(西昌)进行对比研究,同时在不同山体进行不同海拔梯度的比较研究。 本文主要研究结果如下: (1)小枝生物量分配格局叶水平上,叶片重-叶柄重(Y轴vs.X轴,下同)呈斜率小于1的异速生长关系,表明叶柄对叶内部的生物量分配影响显著。小枝水平上,叶和茎的生物量以及它们与小枝总生物量间基本呈等速生长关系,表明大的小枝或大叶物种不一定在叶生物量的分配上占优势。不同生活型间,在小枝或者茎的生物量一定时,常绿物种叶片的生物量比例较落叶物种稍高。与温度和水分较优越(峨眉及其低海拔)的生境相比,在相对低湿(螺髻)与低温(平武)的生境中的植物会减少对叶的投入而增加对支撑部分的投资比例。 (2)小枝叶片大小与数量的权衡无论是不同气候带还是不同生活型以及不同海拔梯度,叶片大小与出叶强度基本都是呈负的等速生长关系,表明了叶片大小-数量在小枝水平上的权衡。在不同气候梯度的对比中,叶片数量(出叶强度)一定时,高温和高水分生境(峨眉)比低温(平武)和低湿(螺髻山)生境中的物种的叶片大小(质量和面积)更大,表明不同生境的比较中,小的叶片可能具有较高的出叶强度和更高的适合度收益。“出叶强度优势”(Leafingintensitypremium)假说可能不适宜解释不同生境物种叶片大小差异。 (3)小枝茎的构型效应虽然茎长和茎径与叶片大小都呈正相关关系,与出叶强度都呈负相关关系,但茎长/茎径比与叶/茎生物量之比呈负相关关系;与叶片的大小呈负相关关系,与出叶强度呈正相关关系。这说明小枝构型能影响小枝叶/茎生物量分配和叶大小-数量的权衡关系。其影响机制可能是小枝内部的顶端优势。另外,茎长/茎径比在低湿和低温等不利生境中的植物中较高,而在降水和温度较适宜环境中较低。 (4)叶片C、N、P化学计量学N含量和P含量,C/N比和比叶重(LMA,leafmassperarea)呈正的等速生长关系,而N和LMA,P和LMA呈负的等速生长关系。在LMA一定时,C/N比随着生境胁迫压力的增加而降低,N、P含量随着生境压力的增加而增加。在P含量一定时,N含量随着生境压力的增加而降低,即N/P比在生境条件较优(峨眉及其低海拔)时较高。常绿和落叶植物叶片的N/P比没有差异,在LMA一定时,常绿植物的N、P含量较高、C/N比较低。总之,植物的C、N、P化学计量学特征受叶片属性如LMA与气候,及其相互作用的影响。 (5)小枝大小的代价与效益分析、TLA与小枝总重总叶面积(TLA,totalleafarea,Y轴,下同)与总叶重(X轴)均呈斜率小于1的异速生长关系,TLA与小枝横切面积呈斜率为1的等速生长关系。表明叶片面积的增加总是小于叶重和小枝总重的增加,随着小枝的增大,它的叶面积支撑效率下降。在热量和降水优越的生境(峨眉及其低海拔)中,相同小枝重或者相同茎横切面积的小枝,其叶面积支撑效率较低湿与低温环境下(螺髻山、平武及高海拔)的高。 总体上,本文初步研究了小枝水平上可能存在的以下三种权衡关系:叶-茎生物量分配权衡;叶片大小-数量的权衡;小枝茎长-茎径的权衡关系,以及气候要素等对这三种权衡关系的影响。在此基础上,我们还讨论了这些权衡关系的可能形成机制,及其与物种生态适应的联系。本研究丰富了生活史对策中关于权衡关系的研究内容,为我国常绿阔叶林功能生态学研究积累了材料。 Evergreen broad-leaved forests are attracting much more attention from vegetation ecologists than ever before because of their abundant nature resource and biological diversity, and also great ecological benefits. China has the largest distribution of subtropical evergreen broad-leaved forests (temperate rainforests) that are typical and representative in the world. The forests span over more than ten degrees in latitude and more than 30 degrees in longitude, providing an ideal place to study plant functional ecology, i.e., the climatic effect on plant functional traits and the relationship between the traits. However, relative to the other biomes, there are few studies addressing functional ecology of the plant species from subtropical evergreen broad-leaved forests. In this study, I focused on the leaf size-twig size spectrum of the woody species of subtropical evergreen broad-leaved forests in southwestern china. I collected data on leaf size and number, twig size in terms of both mass and volume, and stem architecture from five temperate mountains, and then I analyzed the relationships between leaf and stem biomass and between leaf size and number, the effect of stem length/diameter ratio on biomass allocation and on the relationship between leaf size and number, leaf C:N:P stoichiometry, and the twig efficiency of supporting leaf area in relation to twig size. I also addressed the climate effect on the spectrum. The temperature gradient from warm to cool sites was represented by Emei Mountain, Qingchengshan, Leibo, and Pingwu, and the rainfall gradient was assumed to emerge from the comparison between Leibo (High) and Luojishan (Low). In addition, altitudinal effects were analyzed with comparisons between low and high altitudes for each mountains. My main results are as follows. Isometric relationships were found between leaf mass and twig mass and between lamina mass and twig mass, suggesting that the biomass allocation to leaves or laminas was independent of twig mass. Petiole mass disproportionably increase with respect to lamina mass and twig mass, indicating the importance of leaf petioles to the within-twig biomass allocation. In addition, the investigated species tended to have a larger leaf and lamina mass, but a smaller stem mass at a given twig mass at favorable environments including warm and humid sites or at low altitude than unfavorable habitats, which might be due to the large requirements in physical support and transporting safety for the species living at unfavorable conditions. Moreover, the evergreen species invested more in leaves and laminas than the deciduous at given stem or twig biomass within any specified habitats. Negative, isometric scaling relationships between leaf number and size broadly existed in the species regardless of climate, altitude, and life forms, suggesting a leaf size/number trade-off within twigs. Along the climatic gradients, at given leaf number or leafing intensity, the leaves were larger in the favorable environments than the poor habitats. This suggested that the fitness benefit gained by small leaves could be larger than that with high leafing intensity in the stressful sites. I concluded that the “leafing intensity premium” hypothesis was not appropriate to interpreting between-habitat variation in leaf size. Both stem length and diameter were positively correlated to leaf size but negatively correlated to leafing intensity. The ratio of stem length to diameter was negatively correlated to leaf mass fraction, and it was negatively correlated to leaf size but positively correlated to leafing intensity. This suggested that the stem architecture influenced twig biomass allocation and the relationship between leaf size and number. The mechanism underlying the architectural effect might lie in the apical dominance within twig. Moreover, the ratio was greater in unfavorable habitats but smaller in favorable environments. Positive, isometric relationships were found between N and P contents per leaf mass, and between C/N ratio and leaf mass per area (LMA), but N and P contents scaled negatively to LMA. C/N ratio decreased but N and P increased with increasing habitat stress at a given LMA. N content declined with increasing habitat stress at given P content. These indicated that N/P and C/N were higher but LMA was lower in favorable habitats than in the other circumstances. The evergreen and deciduous species were non-heterogeneous in N/P, but the evergreen species have higher N and P contents and lower C/N than the deciduous ones. In general, C:N:P stoichiometry were related to both climatic conditions and other important functional traits like LMA. Total leaf area (TLA) allometricly scaled to leaf mass with a slope shallower than 1, similar to the relationship between TLA and total twig mass (leaf mass plus stem mass), suggesting that TLA failed to keep pace with the increase of leaf mass and twig size. However, TLA scaled isometricly to twig cross-sectional area. Thus, it could be inferred that the twig efficiency of displaying leaf area decreased with increasing twig size. In addition, the efficiency at a given twig size was large in favorable than unfavorable habitats. In general, in this preliminary study, I studied three tradeoff relationships within twigs, i.e., between leaf and stem biomass, between leaf number and size, and between stem length and diameter, as well as the climatic effect on the relationships. I discussed the mechanisms underlying the tradeoff relationships in view of biophysics and eco-physiology of plants. I believe that this study can serve as important materials advancing plant functional ecology of subtropical forest and that it will improve the understanding of life history strategies of plants from this particular biome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

土壤是人类赖以生存的自然环境和农业生产的重要资源,目前土壤受到干旱和盐胁迫的危害越来越严重。杨树具有适应性强、生长快和丰产等特性,本论文以青杨组杨树为模式植物,研究杨树对土壤干旱和盐胁迫的生态生理及蛋白质组学反应,研究成果可为我国干旱半干旱地区营造人工林、防止沙漠化提供理论依据,也为恢复与重建盐污染地区退化生态系统提供科学指导。主要研究结果如下: 1 青杨不同种对逐步干旱胁迫的响应差异 将来自喜马拉雅山东缘高海拔的康定杨和低海拔的青杨枝条扦插在温室中,用来检测它们对逐步干旱胁迫的响应。研究结果表明来自不同海拔的杨树对逐步干旱胁迫的适应性反应是不一样的。株高、叶片发育、叶片相对含水量、丙二醛、过氧化氢等指标的显著性变化在青杨中比在康定杨中来得早些,而且随着干旱胁迫程度的增加,这些参数的变化越来越明显,尤其是当青杨受到严重干旱胁迫的时候;而可溶性蛋白、可溶性糖、游离脯氨酸、抗氧化酶活力变化在康定杨中来得早一些。与青杨相比,在干旱胁迫下,康定杨仍能保持较好的植株生长和叶片发育;康定杨也能在逐步干旱条件下积累更多的可溶性蛋白、可溶性糖、游离脯氨酸及抗氧化酶活力,但是在丙二醛和过氧化氢含量方面增加的更少些。而且,我们的研究结果表明高海拔的康定杨有更强的耐干旱能力,杨树对干旱胁迫的适应能力与干旱发生的速度、强度、持续时间及两种杨树的海拔有关。 2 干旱胁迫下青杨不同种的蛋白质组学分析 来自青杨和康定杨雌株的枝条扦插在温室中,用来研究它们对干旱胁迫的蛋白质组学反应。采用TCA-丙酮/酚提取法提取总蛋白,并进行双向电泳分析。在每个处理的重复图像中都能检测到1,000 个以上的蛋白点。在青杨中有58 个蛋白在干旱处理后发生显著变化,其中22 个蛋白通过肽指纹图谱成功鉴定。康定杨中有69 个蛋白的表达量发生了显著变化,其中有25 个蛋白通过肽指纹图谱成功鉴定。这些被鉴定的蛋白主要参与了光合作用、氧化还原平衡、信号传导、能量代谢、蛋白质合成等过程。尽管被鉴定的蛋白只占叶片总蛋白的很少一部分,但这些被鉴定的干旱响应蛋白可能对维持植株内部平衡方面有重要作用。 3 青杨的盐胁迫响应 青杨植株分别用 0、50 和100 mM NaCl 溶液进行处理。叶片相对含水量、叶绿素a、b 含量、CO2 同化速率和气孔导度的降低表明叶绿体受到了盐胁迫的影响。过氧化氢、丙二醛含量及电导率的升高表明细胞受到了伤害。可溶性糖、游离脯氨酸含量及抗氧化酶含量的上升增加了植株耐盐胁迫的能力。在每个处理的重复图像中都能检测到1,000 个以上的蛋白点。其中有38 个盐响应蛋白被成功鉴定,有16 个蛋白(点4、10、11、14、15、21、24、26、27、28、33、34、35、36、37 和38)出现在盐胁迫的植株中;3 个蛋白(点10、11 和35)只出现在重度盐胁迫处理中;而1 个蛋白(点1)只出现在对照处理中。2 个蛋白(点1 和2)表达量下降,其余蛋白点表达量都增加。被鉴定的蛋白一部分参与了生理生化反应,而另一部分则在信号传导、蛋白质合成等方面有重要作用。盐胁迫下的生理生化变化及蛋白质组学的联合研究有利于青杨对盐胁迫的适应性分析。 Soil is the indispensable environment for human survival and important resource for agriculture development. Nowadays soil is threatened by drought stress and salt stress. Poplars (Populus spp.) possess some characters such as strong acclimilation, fast growth and great production of biomass. In this study, different species of Populus section Tacamahaca spach were used as model plants to investigate the ecophysiological and proteomic responses to drought stress and salt stress. Our results can provide theoretical evidence for the afforestation and prevention of desertification in the arid and semi-arid areas, and also can supply scientific direction for the reconstruction and rehalibitation of ecosystems contaminated by salinity. The results are as follows: 1 Adaptive responses to progressive drought stress in two contrasting poplar species originating from different altitudes Cuttings of Populus kangdingensis C. Wang et Tung and Populus cathayana Rehd., originating from high and low altitudes in the eastern Himalaya, respectively, were examined during one growing season in a greenhouse to determine the effects of progressive drought stress. The results manifested that the adaptive responses to progressive drought stress were different in these two species from different altitudes. Significant changes in height increment, leaf development, relative water content (RWC), malondialdehyde (MDA) and hydrogen peroxide (H2O2) appeared earlier in P. cathayana than in P. kangdingensis, whereas changes in soluble protein, soluble sugar, free proline and antioxidant enzymes appeared earlier in P. kangdingensis. In addition, changes in these parameters became more and more significant when the drought stress progressed, especially under severe drought stress in P. cathayana. Compared with P. cathayana, P. kangdingensis was able to maintain a superior height increase and leaf development under drought stress. Also, P. kangdingensis possessed greater increments in soluble protein, soluble sugar, free proline and antioxidant enzymes, but lower increments in MDA and H2O2 than did P. cathayana when the cuttings were exposed to progressive drought stress. Our results suggest that P. kangdingensis originating from the high altitude has a better drought tolerance than does P. cathayana originating from the low altitude. Furthermore, this study manifested that acclimation to drought stress are related the rapidity, severity, duration of the drought event and the altitude of two contrasting species. 2 Proteomic responses to drought stress in two contrasting poplar species originating from different altitudes The cuttings from a female clone of P. kangdingensis and P. cathayana were used to determine proteomic response to drought stress, respectively. Total proteins of the leaves were extracted by a combination of TCA-acetone and phenol, and separated by two-dimensional gel electrophoresis. More than 1,000 protein spots were reproducibly detected on each gel. 58 differentially expressed spots were detected under drought stress in P. cathayana and 22 drought-responsive proteins were identified by peptide mass fingerprint. 69 differentially expressed spots were detected under drought stress in P. kangdingensiss and 25 drought-responsive proteins were identified by peptide mass fingerprint. The identified proteins are involved in several processes, i.e., signal transduction, protein processing, redox homeostasis, CO2 fixation and energy metabolism. Although the proteins identified in this investigation represent only a very small part of the poplar leaf proteins, some of the novel drought-responsive proteins identified here may be involved in the establishment of homeostasis in response to drought stress in the woody plants. 3 Responses to salt stress in P. cathayana Cuttings from a female clone of P. cathayana were treated by Hoagland’s solution: 0, 50, 100 mM NaCl, respectively. Salinity significantly decreased the relative water content of leaves, the contents of chlorophyll a and chlorophyll b, CO2 assimilation rate (A) and stomatal conductance (gs) in both salt stress treatments,which suggested the chloroplast was affected by salt stress. The observed increases of H2O2 and malondialdehyde contents and electrolyte leakage suggested that salinity caused cellular damage, whereas the increases in compatible solutes and in the activities of antioxidant enzymes enhanced the salt tolerance. More than 1,000 protein spots were reproducibly detected on each gel, and 38 salt-responsive proteins were successfully identified by peptide mass fingerprint (PMF). 16 spots (spot 4, 10, 11, 14, 15, 21, 24, 26, 27, 28, 33, 34, 35, 36, 37 and 38) absent in the control sample were induced by the salt treatment, and three spots (spot 10,11 and 35) were present only in the severely salt-stressed treatment. The %vol of the differentially expressed proteins generally increased with progressing salt stress, except for the decreased %vol of two proteins (spot 1 and 2) under salt stress and the presence of spot 1 only in the control sample. Some of the novel salt-responsive proteins identified here may be involved in physiological, biochemical response to salt stress in P. cathayana, the other identified proteins play a role in numerous cellular functions, including signal transduction and protein processing. An integrated physiological, biochemical and proteomic approach was used here to systematically investigate salt acclimation in poplar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

光是植物赖以生存的重要环境因子,但是植物在获得光的同时不可避免的会受到紫外辐射的伤害。尤其是近年来,人类向大气中排放的大量氮氧化合物和氟氯烃类化合物(CFC’s)引起臭氧分子的分解,导致到达地球表面的紫外辐射增加,特别是UV-B辐射增强。而另一方面,植物对UV-B辐射反应的敏感性在种间和品种间存在差异,主要受植物基因型,生态型和生活型的控制。本项目分别以粗枝云杉和青杨组杨树为模式植物,从形态和生理生化方面分别研究了来自不同水分背景下的粗枝云杉种群和来自不同UV-B背景下的青杨种群在增强UV-B下的反应及其反应差异,并探讨了干旱、喷施外源脱落酸(ABA)对它们抗UV-B能力的影响。研究成果可为生态系统的恢复与重建提供理论依据和科学指导。主要研究结果如下: 1. 粗枝云杉的两个种群,湿润种群(来自四川黑水)和干旱种群(来自甘肃迭部)在水分良好和干旱状况下表现出对增强UV-B的不同响应。同时,干旱对粗枝云杉抗UV-B能力的影响也得到研究:两种胁迫共同作用时,干旱表现出在一定程度上减弱了增强UV-B对粗枝云杉的生理特性的影响。 干旱胁迫显著降低了两个粗枝云杉种群的光合同化速率(A), 气孔导度(gs)和PSII的有效光量子产量(Y), 同时,提高了非光化学猝灭效率(qN)和超氧化物歧化酶(SOD)的活性。与湿润种群相比,干旱种群抗旱性更强,表现为干旱种群拥有更高的SOD和干旱进一步加剧了UV-B的胁迫效应。 本研究中,干旱胁迫单独作用时,显著降低了青杨两个种群的生物量积累和气体交换,具体包括A、gs、蒸腾速率(E)和光合氮利用效率(PNUE),提高了两个种群的瞬时水分利用效率(WUEi)、长期水分利用效率(WUET)、碳同位素组分(δ13C)和氮含量(N)。同时,UV吸收物质和ABA含量也得到积累。另一方面,增强UV-B对青杨两个种群各个指标的影响,同干旱所引起的效应有着相似的趋势。同低海拔种群相比,高海拔种群有着更强的抗旱和抗UV-B能力,具体表现在高海拔种群有着更多的生物量积累,更强的气体交换和水分利用效率及更高水平的ABA和UV吸收物质含量。相比干旱诱导的生物量积累和气体交换的降低,在干旱和增强UV-B两个胁迫同时作用于青杨时,这种降低表现的更为明显。显著的干旱和UV-B的交互作用还表现在WUEi, WUET, δ13C, 可溶性蛋白含量, UV吸收物质含量, ABA, 叶片和茎中的N含量以及C/N比中。 3. 经过一个生长季的试验观察,增强UV-B、外源ABA及两因子共同作用对青杨的生物量积累、气体交换、内源ABA和UV吸收物质含量、抗氧化系统以及碳、氮含量和碳/氮比均产生显著影响。本试验中,青杨的两个种群分别来自中国西南部的不同海拔地区,高海拔种群来自青海大通而低海拔种群来自四川九寨。外源ABA的胁迫为直接喷施ABA到青杨叶片,而增强UV-B胁迫是利用平方波系统分别保证青杨苗暴露于外界UV-B强度和两倍于外界UV-B强度下。 研究结果显示,增强UV-B显著的降低了两个青杨种群的株高、基茎、总叶面积和总生物量等生长指标,同时也导致其A、gs、E和叶片中碳含量的减少。而显著增加了SOD和过氧化物酶(GPx)活性水平,诱导了过氧化氢(H2O2)和MDA的显著增加,促进了UV吸收物质和不同器官中内源ABA含量的显著积累。另一方面,外源ABA引起了青杨光合同化速率的下降,SOD和GPx酶活性的增强,H2O2 和 MDA含量也表现出显著增加,同时,内源ABA含量得到显著累积。同低海拔种群相比,高海拔种群具有更加抗UV-B和外源ABA的特性。显著的UV-B和ABA的交互作用表现在A, E, SOD和GPx活性,以及叶片和根部的内源ABA等一系列指标中。在所有胁迫下,叶片中的碳和氮含量同其在茎和根中的含量显著相关,另外,叶片和茎中的氮含量同茎中的碳含量显著相关。 Sunlight is an indispensable environment factor for plants survival and development. Meanwhile, photosynthetic organisms need sunlight and are thus, inevitably, exposed to UV radiation. Especially for recent years, ultraviolet radiation, especially UV-B reaching the Earth’s surface increased because of depletion of ozone layer resulted from emission of NxO and CFC’s from human activities. On the other hand, the sensitivity of plants to UV-B radiation depends on the species, developmental stage and experimental conditions. In this experiment, two populations of Picea asperata Mast from different water background and two populations of Populus cathayana Rehder from different altitude background were selected as model plants to assess the effects of enhanced UV-B radiation. Morphological and physiological traits induced by enhanced UV-B in each plant species were observed and the different responses were discussed, furthermore the influences of drought and exogenous ABA on responses induced by enhanced UV-B were studied. The study could provide a strong theoretical evidence and scientific direction for the afforestation and rehabilitation of ecosystem. The results are as follows: 1. Different responses of two contrasting Picea asperata Mast. populations to enhanced ultraviolet-B (UV-B) radiation under well-watered and drought conditions were investigated. And the effects of enhanced UV-B on tolerance of drought were also observed in our study that the UV-B exposure may have alleviated some of the damage induced by drought. Two contrasting populations, originating from a wet and dry climate region in China, respectively, were employed in our study. Drought significantly decreased CO2 assimilation rate (A), stomatal conductance (gs) and effective PSII quantum yield (Y), while it significantly increased non-photochemical quenching (qN) and the activity of superoxide dismutase (SOD) in both populations. Compared with the wet climate population, the dry climate population was more acclimated to drought stress and showed much higher activities of SOD and ascorbate peroxidase (APX), and much lower levels of malondialdehyde (MDA) and electrolyte leakage. On the other hand, enhanced UV-B radiation also induced a significant decrease in the chlorophyll (Chl) content in both populations under well-watered conditions, and a significant increase in UV-absorbing compounds in the wet climate population. After one growing season of exposure to different UV-B levels and watering regimes, the increases in MDA and electrolyte leakage, as induced by drought, were less pronounced under the combination of UV-B and drought. In addition, an additive effect of drought and UV-B on A and gs was observed in the wet climate population, and on the activity of APX and qN in the dry climate population. 2. The significant effects of drought, enhanced UV-B radiation and their combination on Populus cathayana Rehd. growth and physiological traits were investigated in two populations, originating from high and low altitudes in south-west China. Our results showed that UV-B acts as an important signal allowing P. cathayana seedlings to respond to drought and that the combination of drought and UV-B may cause synergistically detrimental effects on plant growth in both populations. In both populations, drought significantly decreased biomass accumulation and gas exchange parameters, including A, gs, E and photosynthetic nitrogen use efficiency (PNUE). However, instantaneous water use efficiency (WUEi), transpiration efficiency (WUET), carbon isotope composition (δ13C) and nitrogen (N) content, as well as the accumulation of soluble protein, UV-absorbing compounds and abscisic acid (ABA) were significantly increased by drought. On the other hand, cuttings from both populations, when kept under enhanced UV-B radiation conditions, showed very similar changes in all above-mentioned parameters, as induced by drought. Compared with the low altitude population, the high altitude population was more tolerant to drought and enhanced UV-B, as indicated by the higher level of biomass accumulation, gas exchange, water-use efficiency, ABA concentration and UV-absorbing compounds. After one growing season of exposure to different UV-B levels and watering regimes, the decrease in biomass accumulation and gas exchange, induced by drought, was more pronounced under the combination of UV-B and drought. Significant interactions between drought and UV-B were observed in WUEi, WUET, δ13C, soluble protein, UV-absorbing compounds, ABA and in the leaf and stem N, as well as in the leaf and stem C/N ratio. 3. During one growing season, significant effects induced by enhanced UV-B radiation, exogenous ABA and their combination on biomass accumulation, gas exchange, endogenous ABA and UV-absorbing compounds concentrations, antioxidant system as well as carbon (C) content, nitrogen (N) content and C/N ratio were investigated in two contrasting Populus cathayana populations, originating from high and low altitudes in south-west China. Exogenous ABA was sprayed to the leaves and enhanced UV-B treatment was using a square-wave system to make the seedlings under ambient (1×) or twice ambient (2×) doses of biologically effective UV-B radiation (UV-BBE). Enhanced UV-B radiation significantly decreased height, basal diameter, total leaf area, total biomass, A, gs, E and carbon (C) content in leaves, and significantly increased activities of SOD and guaiacol peroxidase (GPx), hydrogen peroxide (H2O2) and malonaldehyde (MDA) content as well as the accumulation of UV-absorbing compounds and endogenous ABA concentrations among different organs in both populations. In contrast, exogenous ABA showed significant decrease in A and significant increases in activities of SOD and GPx, H2O2, MDA content and the endogenous ABA concentrations. Compared with the low altitude population, the high altitude population was more tolerant to enhanced UV-B and exogenous ABA. Significant interactions between UV-B and ABA were observed in A, E, activities of SOD and GPx, as well as in endogenous ABA in leaves and roots of both populations. Across all treatments, C and N content in leaves was strongly correlated with those were in stems and roots, respectively. Additionally, leaf and stem N content were significant correlated with stem C content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

环境突发污染事故给人民生活、经济发展和生态环境造成重大影响,研究污染物泄漏造成河流突发污染事故的应急处理方法十分必要。本论文选取苯酚、苯胺和亚甲基蓝等典型污染物为实验对象,采用吸附容量大、密度与水接近的活性炭纤维(ACF)为吸附剂。在自制的河流模型中,研究了ACF以苯酚、苯胺和亚甲基蓝为典型污染物的吸附过程,考察了吸附剂投加量、污染物浓度、吸附剂比表面积、吸附剂投加方式、水流速度与水质等对吸附速率与吸附效果的影响。实验结果表明,ACF能以较快的速率吸附苯酚、苯胺和亚甲基蓝,吸附率都在95%以上; ACF投加量是影响吸附速率最重要的因素,当一次性投加ACF质量之比为 1:2:4时,吸附速率常数之比近似为1:2:4;污染物浓度对吸附速率的影响显著,浓度较低时吸附速率较高。苯酚初始浓度为7mg·L-1时,经过86分钟的吸附,处理后的浓度可以达到地表水Ⅴ类水中挥发酚的限值要求(0.1mg·L-1);在吸附11分钟左右追加适量的ACF,能够明显提高吸附速率;河水流速和河流中的天然有机物、浊度、河水硬度对ACF吸附都不产生显著影响,这说明ACF作为河流突发污染事故应急处理的吸附剂,有广泛的适应性。在实际河水中,ACF对苯酚的吸附过程与在模拟河水中相似,吸附效果显著。实验结果还表明,ACF对苯酚的吸附是放热反应,符合Freundlich模型和Langmuir模型。事故应急处理后,应该及时将吸附了污染物的ACF打捞上来,有利于进行后续处理。 Emergency environmental pollution accidents pose significant impacts on our living, economic development and ecological environment. The study on the approach of emergency control for the contingency caused by leakage of pollutants in rivers is very necessary. In the experiment, phenol, aniline and methylene blue were selected as representative pollutant and activated carbon fiber (ACF) was selected as adsorbent, which has strong adsorption capacity and similar density to water. In the self-made river model, the effects of ACF dosage, pollutant concentration, ACF surface area, ACF adding ways, water flow rate and water quality on adsorption courses were investigated. The experimental results showed that ACF could adsorb pollutant quickly and effectively. The ACF dosage was the most important factor that affected adsorption rate .When the ACF dosage rate was 1:2:4, the constants of adsorption rate was approximately 1:2:4. The effect of pollutant concentrations on the adsorption rate was notable. Faster adsorption rates were achieved at low pollutant concentrations. Phenol concentration reached the limits of volatile phenol in Category Ⅴ surface water (0.1 mg·L-1) after 86 minutes of adsorption with initial phenol concentration of 7 mg·L-1. After 11 minutes of adsorption, certain amount of ACF was added and the adsorption rate was improved significantly. River flow rate and water quality have little effect on the adsorption rate. The adsorption results obtained in actual river water were comparable with that in simulating river water. The results also showed that, ACF on the absorption of phenol is exothermic reaction, witch matched with the Freundlich model and the Langmuir model. After emergency treatment, the ACF absorbed pollutants should be promptly salvaged for follow-up treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

捷安肽素是一种由枯草芽孢杆菌(Bacillus subtilis)ZK 产生的抗真菌多肽。本文以柑桔青霉菌(Penicillium italicum)和绿霉菌(Penicillium digitaum)为供试真菌,研究了捷安肽素的抑菌性能及作用机理,为捷安肽素开发为有效的生物杀菌剂提供理论依据。全文共分两部分:第一部分:捷安肽素对柑桔青霉菌和绿霉菌抑制效果研究。采用琼脂扩散法测定捷安肽素对柑桔青霉菌和绿霉菌的抑菌活性。53.9 µg/mL 捷安肽素对绿霉菌和青霉菌的抑菌圈直径分别为26.7mm 和24.1mm。结果表明捷安肽素能够抑制柑桔青绿霉菌的生长,柑桔绿霉菌比青霉菌对捷安肽素敏感。在柑桔果实上,研究了不同浓度、不同接入时间的捷安肽素对柑桔青霉病和绿霉病的防治效果,并与常用化学杀菌剂抑霉唑、咪鲜胺、甲基硫菌灵和多菌灵作比较。53.9 µg/mL捷安肽素处理柑桔果实,柑桔青霉病和绿霉病发病率分别为5.0 %和5.3 %,比对照低95.0 %和94.7 %;柑桔青霉病和绿霉病的病情指数分别为1.87 和2.18,比对照低73.73 和97.82。结果表明,捷安肽素能够有效地防治柑桔青绿霉病。与对照相比,捷安肽素先于或后于柑桔青绿霉菌接入时,对柑桔青绿霉菌均有抑制作用,但抑制效果随接入间隔时间的增长而降低。第二部分:捷安肽素对绿霉菌作用机理研究。首先在光学显微镜和透射电镜下观察捷安肽素处理后绿霉菌菌丝表面形态结构与菌丝体内超微结构的变化。形态观察发现,捷安肽素处理24h以内,绿霉菌菌丝结构无变化。捷安肽素作用36h后,绿霉菌菌丝不规则缢缩和膨大。48h后,在绿霉菌菌丝顶端、中部、末端的多处细胞均可发生畸形的球状结构,这种畸变结构随处理的延长而增加,致使细胞成为捻珠状。处理72 h后,畸变球形细胞开始断裂离解。处理96h后,镜下几乎无完整菌丝,成单个的球状细胞,部分细胞出现破裂。而对照菌丝表面光滑,结构完整。通过透射电镜观察发现,与对照相比,捷安肽素处理后,绿霉菌细胞壁、细胞膜轮廓模糊不清,细胞质外泄。推测捷安肽素能够使绿霉菌细胞膜通透性发生改变。进一步实验利用紫外-可见分光光度计检测捷安肽素作用后绿霉菌胞外液紫外吸光度的变化,表明捷安肽素作用于绿霉菌菌丝后,细胞内蛋白质、核酸缓慢泄漏。通过Atomscan Advantage单道扫描等离子体发射光谱仪(ICP)测定捷安肽素作用后菌丝体内K+浓度的改变,结果表明捷安肽素作用于柑桔绿霉菌1h内,菌丝体内K+含量迅速下降,为对照绿霉菌K+含量的37.53 %,1 h后菌丝体内K+含量变化趋于平缓。K+的迅速泄漏,以及蛋白质、核酸的泄漏表明捷安肽素通过迅速改变绿霉菌细胞膜通透性,使绿霉菌菌丝生长受到抑制。Jiean-peptide produced by Bacillus subtilis ZK has broad-spectrumresistance to plant pathogens. In this study, we investigated the antifungal propertyand the possible antifungal mechanism of jiean-peptide against two commonphytopathogenic fungi of citrus fruits: blue molds (P. italicum) and green molds (P.digitatum).The paper involved two parts:Part 1 is the study of the antifungal property of jiean-peptide against blue moldsand green molds of citrus fruits. The in vitro inhibition effect of jiean-peptide againstblue molds and green molds was detected by agar diffusion method. The diameters ofinhibition zones of green molds and blue molds are 26.7mm and 24.1mm respectivelyby treating with 53.9 µg/mL jiean-peptide. It shows that jiean-peptide effectivelyinhibits the both phytopathogenic fungi, and it is more effective for inhibiting greenmolds than blue molds. The effectiveness of jiean-peptde to inhibit green molds andblue molds in vivo was investigated compared with four conventional fungicides thatare imazalil, prochloraz, carbendazin and methylthiophanate. The result is that the incidences of the blue mold disease and green mold disease are 5.0 % and 5.3 %, thedisease severities are 1.87 and 2.18 respectively when citrus are inoculated with 53.9µg/ml jiean-peptide. The decay incidences and disease severities were significantlyreduced by treating with jiean-peptide compared with the control. The results indicateJiean-peptide is effective for controlling blue molds and green molds on citrus. Theoptimized inoculation time was also investigated. When inoculated with jiean-peptideat 0 h, 6 h, 12 h, 24 h and 48 h before or after pathogens’ inoculation, Jiean-peptidecan suppress the occurrence of blue molds and green molds compared with the control, but the effect of later inoculation decreases compared with the inoculation at the sametime.In Part 2, we investigated the possible antifungal mechanism against greenmolds of citrus. At first, we observed the exterior morphological changes andultrastructural changes of blue molds under light microscopy (LM) and transmissionelectron microscopy (TEM). Compared with untreated control cells which aregenerally uniform in shape, the appearances of treated hyphae change obviously. Itshows that some cells of hyphae irregularly shrink or enlarge when cultured for 36h.When the treating time of jiean-peptide increases, the aberrance of the hyphaebecomes more obvious, and hyphae exhibit the moniliform appearances. Finally, thereis no intact hypha leaved except only single cells, and some of which appear fractured.By transmission electron microscopy (TEM) observation, we find that the outline ofthe cell wall and the cell membrane of hyphae are blurry, and the cytoplasma oozesout. The observation result under LM and TEM suggests that jiean-peptide mightchange the permeability of the cell membrane. So we conducted further experiment todetect the change of permeability when the cells of blue molds were treated withjiean-peptide. And the effect of jiean-peptide on non-growing cells of blue molds wastested. By the spectrophotometer measurement, we found that compounds with lightabsorption at 260 nm and 280 nm were released and amounts increased within 12 hcompared with the control. Moreover, by the ICP measurement, the leakage of K+occurred immediately in the presence of jiean-peptide within 1 h, but with nearly nofurther change after 1 h. All these results indicate that jiean-peptide could change themembrane permeability of blue molds immediately and result in leaking nucleotides,proteins and K+ from cells.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a serial of Bi3.4Yb0.6Ti3-xVxO12 (BYTV) thin film with different V5+ contents were deposited on Pt/Ti/SiO2/Si substrates by chemical solution deposition (CSD). The crystallized phase and electrical properties of the films were investigated using X-ray diffraction, polarization hysteresis loops, leakage current-voltage, and fatigue test. From our experimental results, it can be found that the ferroelectric properties can be improved greatly using V5+-doped in Bi3.4Yb0.6Ti3O12 (BYT) thin film, compared with the reported BYT thin film. The remanent polarization was enhanced and excellent leakage current characteristic with 10(-11)A at the bias voltage of 4V, which is much lower than the BYT thin film or some reported bismuth layer-structure ferroelectric films. Fatigue test shows that the fabricated films have good anti-fatigue characteristic after 10(10) switching cycles. (c) 2008 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current concern about an anthropogenic impact on global climate has made it of interest to compare the potential effect of various human activities. A case in point is the comparison between the emission of greenhouse gases from the use of natural gas and that from other fossil fuels. This comparison requires an evaluation of the effect of methane emissions relative to that of carbon dioxide emissions. A rough analysis based on the use of currently accepted values shows that natural gas is preferable to other fossil fuels in consideration of the greenhouse effect as long as its leakage can be limited to 3 to 6 percent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

毫秒延迟发光测定结果表明低温弱光处理黄瓜叶片导致类囊体原位 (in situ)耦联度显著降低。DCCD可以恢复低温弱光处理的黄瓜叶片的毫秒延迟发光的慢相强度和反映类囊体膜质子吸收的 9- AA(9- Aminoacridine)荧光猝灭能力 ,说明类囊体耦联度降低的原因是质子由 CF0 大量快速渗漏。进一步研究结果表明 ,活性氧和 CF1的脱落不是低温弱光引起黄瓜类囊体耦联度降低的根本原因。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the fabrication of permeable metal-base transistors based on bis(2-methyl-8-quinolinolato-N1,O8)-(1,1'-biphenyl-4-olato) aluminum (BAlq(3))/tri(8-hydroxyquinoline) aluminum (Alq(3)) isotype heterostructure as emitter layer. In this transistor, n-Si was used as the collector, LiF/Al as the emitter electrode, and Au/Al bilayer metal as the base. We show that the leakage current is greatly reduced in Al/n-Si/Au/Al/BAlq(3)/Alq(3)/LiF/Al devices with respect to Al/n-Si/Au/Al/Alq(3)/LiF/Al devices due to the utilization of BAlq(3)/Alq(3) isotype heterostructure emitter, leading to high common-base and common-emitter current gains at low driving voltages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As inorganic proton conductors. phosphomolybdic acid (PMA), phosphotungstic acid (PWA) and silicotungstic acid (SiWA) are extremely attractive for proton-conducting composite membranes. An interesting phenomenon has been found in our previous experiments that the mixing of chitosan (CS) solution and different heteropolyacids (HPAs) leads to strong electrostatic interaction to form insoluble complexes. These complexes in the form of membrane (CS/PMA, CS/PWA and CS/SiWA composite membranes) have been prepared and evaluated as novel proton-conducting membranes for direct methanol fuel cells. Therefore, HPAs can be immobilized within the membranes through electrostatic interaction, which overcomes the leakage problem from membranes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report enhanced polymer photovoltaic (PV) cells by utilizing ethanol-soluble conjugated poly (9, 9-bis (6'-diethoxylphosphorylhexyl) fluorene) (PF-EP) as a buffer layer between the active layer consisting of poly(3-hexylthiophene)/[6, 6]-phenyl C61-butyric acid methyl ester blend and the Al cathode. Compared to the control PV cell with Al cathode, the introduction of PF-EP effectively increases the shunt resistance and improves the photo-generated charge collection since the slightly thicker semi-conducting PF-EP layer may restrain the penetration of Al atoms into the active layer that may result in increased leakage current and quench photo-generated excitons. The power conversion efficiency is increased ca. 8% compared to the post-annealed cell with Al cathode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bottom-contact organic thin-film transistors (BC OTFTs) based on inorganic/organic double gate insulators were demonstrated. The double gate insulators consisted of tantalum pentoxide (Ta2O5) with high dielectric constant (kappa) as the first gate insulator and octadecyltrichlorosilane (OTS) with low kappa as the second gate insulator. The devices have carrier mobilities larger than 10(-2) cm(2)/V s, on/off current ratio greater than 10(5), and the threshold voltage of -14 V, which is threefold larger field-effect mobility and an order of magnitude larger on/off current ratio than the OTFTs with a Ta2O5 gate insulator. The leakage current was decreased from 2.4x10(-6) to 7.4x10(-8) A due to the introduction of the OTS second dielectric layer. The results demonstrated that using inorganic/organic double insulator as the gate dielectric layer is an effective method to fabricate OTFTs with improved electric characteristics.