1000 resultados para 3D packing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An area-efficient high-throughput architecture based on distributed arithmetic is proposed for 3D discrete wavelet transform (DWT). The 3D DWT processor was designed in VHDL and mapped to a Xilinx Virtex-E FPGA. The processor runs up to 85 MHz, which can process the five-level DWT analysis of a 128 x 128 x 128 fMRI volume image in 20 ms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-sample rate 3D median filtering processor architecture is proposed, based on a novel 3D median filtering algorithm, that can reduce the computing complexity in comparison with the traditional bubble sorting algorithm. A 3 x 3 x 3 filter processor is implemented in VHDL, and the simulation verifies that the processor can process a 128 x 128 x 96 MRI image in 0.03 seconds while running at 50 MHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a comprehensive analysis of thermal resistance of trench isolated bipolar transistors on SOI substrates based on 3D electro-thermal simulations calibrated to experimental data. The impact of emitter length, width, spacing and number of emitter fingers on thermal resistance is analysed in detail. The results are used to design and optimise transistors with minimum thermal resistance and minimum transistor area. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virtual reality is currently considered a first-order resource for education and training. In this regard, artistic education, like other disciplines, is backing into this technology as a tool to overcome obstacles and contribute new ways of visualization and of providing information. And, in this case, the use of this technology presents enormous advantages for museums, especially, the more modest ones, which have few resources to disseminate and show their collections and works. Moreover, they have to resort to ingenious solutions to solve their difficulties. Therefore, the Pedagogic Museum of Children’s Art (MUPAI) backs into this technology to overcome some of the difficulties it encounters and to allow interested spectators to see its works, with great realism, and to visit its facilities anywhere in the world and at any time of the day. Hence, virtual reality unfolds new possibilities in the field of education that were inconceivable only a short time ago.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of making replicas of heritage has traditionally been developed by public agencies, corporations and museums and is not commonly used in schools. Currently there are technologies that allow creating cheap replicas. The new 3D reconstruction software, based on photographs and low cost 3D printers allow to make replicas at a cost much lower than traditional. This article describes the process of creating replicas of the sculpture Goslar Warrior of artist Henry Moore, located in Santa Cruz de Tenerife. To make this process, first, a digital model have been created using Autodesk Recap 360, Autodesk 123D Catch and Autodesk Meshmixer MarkerBot MakerWare applications. Physical replication, has been reproduced in polylactic acid (PLA) by MakerBot Replicator 2 3D printer. In addition, a cost analysis using, in one hand, the printer mentioned, and in the other hand, 3D printing services both online and local, is included. Finally, there has been a specific action with 141 students and 12 high school teachers, who filled a questionnary about the use of sculptural replicas in education.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper was aimed at presenting the time-averaged velocity and turbulence intensity at the initial plane from a ship’s propeller. The flow characteristics of a ship’s propeller jet are of particular interest for the researchers investigating the jet induced seabed damage as documented in the previous studies. Laser Doppler Anemometry (LDA) measurements show that the axial component of velocity is the main contributor to the velocity magnitude at the initial plane of a ship’s propeller jet. The tangential component contributes to the rotation while the radial component which contributes to the diffusion, are the second and third largest contributors to the velocity magnitude. The maximum tangential and radial velocity components at the initial plane are approximately 82% and 14% of the maximum axial velocity component, respectively. The axial velocity distribution at the initial plane shows two peaked ridges with a low velocity core at the rotation axis. The turbulence intensity distribution shows a three-peaked profile at the initial plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research presents the development of an analytical model to predict the elastic stiffness performance of orthogonal interlock bound 3D woven composites as a consequence of altering the weaving parameters and constituent material types. The present approach formulates expressions at the micro level with the aim of calculating more representative volume fractions of a group of elements to the layer. The rationale in representing the volume fractions within the unit cell more accurately was to improve the elastic stiffness predictions compared to existing analytical modelling approaches. The models developed in this work show good agreement between experimental data and improvement on existing predicted values by models published in literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article investigates the damage imparted on load-bearing carbon fibers during the 3D weaving process and the subsequent compaction behavior of 3D woven textile preforms. The 3D multi-layer reinforcements were manufactured on a textile loom with few mechanical modifications to produce preforms with fibers orientated in the warp, weft, and through-the-thickness directions. Tensile tests were conducted on three types of commercially available carbon fibers, 12k HTA, 6k HTS, and 3k HTS in an attempt to quantify the effect of fiber damage induced during the 3D weaving process on the mechanical and physical performance of the fiber tows in the woven composite. The tests were conducted on fiber tows sampled from different locations in the manufacturing process from the bobbin, through the creel and loom mechanism, to the final woven fabric. Mechanical and physical testing were then conducted to quantify the tow geometry, orientation and the effect of compaction during manufacture of two styles of 3D woven composite by vacuumassisted resin transfer molding (VaRTM).