989 resultados para 170-1039


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complete structural elucidation of complex lipids, including glycerophospholipids, using only mass spectrometry represents a major challenge to contemporary analytical technologies. Here, we demonstrate that product ions arising from the collision-induced dissociation (CID) of the [M + Na] + adduct ions of phospholipids can be isolated and subjected to subsequent gas-phase ozonolysis-known as ozone-induced dissociation (OzID)-in a linear ion-trap mass spectrometer. The resulting CID/OzID experiment yields abundant product ions that are characteristic of the acyl substitution on the glycerol backbone (i.e., sn-position). This approach is shown to differentiate sn-positional isomers, such as the regioisomeric phosphatidylcholine pair of PC 16:0/18:1 and PC 18:1/16:0. Importantly, CID/OzID provides a sensitive diagnostic for the existence of an isomeric mixture in a given sample. This is of very high value for the analysis of tissue extracts since CID/OzID analyses can reveal changes in the relative abundance of isomeric constituents even within different tissues from the same animal. Finally, we demonstrate the ability to assign carbon-carbon double bond positions to individual acyl chains at specific backbone positions by adding subsequent CID and/or OzID steps to the workflow and that this can be achieved in a single step using a hybrid triple quadrupole-linear ion trap mass spectrometer. This unique approach represents the most complete and specific structural analysis of lipids by mass spectrometry demonstrated to date and is a significant step towards comprehensive top-down lipidomics. This journal is © The Royal Society of Chemistry 2014. Grant Number ARC/DP0986628, ARC/FT110100249, ARC/LP110200648

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reactions of distonic 4-(N, N, N-trimethylammonium)-2-methylphenyl and 5-(N, N, N-trimethylammonium)-2-methylphenyl radical cations (m/z 149) with O-2 are studied in the gas phase using ion-trap mass spectrometry. Photodissociation (PD) of halogenated precursors gives rise to the target distonic charge-tagged methylphenyl radical whereas collision-induced dissociation (CID) is found to produce unreactive radical ions. The PD generated distonic radicals, however, react rapidly with O-2 to form \[M + O2](center dot+) and \[M + O-2 - OH](center dot+) ions, detected at m/z 181 and m/z 164, respectively. Quantum chemical calculations using G3SX(MP3) and M06-2X theories are deployed to examine key decomposition pathways of the 5-(N, N, N-trimethylammonium)-2-methylphenylperoxyl radical and rationalise the observed product ions. The prevailing product mechanism involves a 1,5- H shift in the peroxyl radical forming a QOOH-type intermediate that subsequently eliminates (OH)-O-center dot to yield charge-tagged 2-quinone methide. Our study suggests that the analogous process should occur for the neutral methylphenyl + O-2 reaction, thus serving as a plausible source of (OH)-O-center dot radicals in combustion environments. Grants: ARC/DP0986738, ARC/DP130100862

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anionic heterocumulene SCCCN- was generated in the gas phase by collisional activation of the radical anion of 1,2-dicyanoethylenedithiolate. The mechanism of this reaction, as well as the structures of neutral and anionic products, was investigated by hybrid density functional theory (DFT) calculations. Dissociation to form SCCCN- and SCN is proposed to occur by a radical directed cyano migration reaction, with calculations suggesting this is the lowest energy fragmentation pathway available to the precursor anion. In contrast, the even-electron protonated 1,2-dicyanoethylenedithiolate anion fragmented by loss of HCN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using epistemic perspectives as a theoretical framework, this study investigated Australian pre-service teachers’ perspectives about knowing, knowledge and children’s learning, as they engaged in a semester-long unit on philosophy in the classroom. During the field experience component of the unit, pre-service teachers were required to teach at least one philosophy lesson. Pre-service teachers completed the Personal Epistemological Beliefs Survey at the beginning and end of the unit. They were also interviewed in focus groups at the end of the semester to investigate their views about children’s learning. Paired sample t-tests were used to explore changes in epistemic beliefs over time. Significant differences were found for only some individual items on the survey. However, when interviewed, pre-service teachers indicated that field experiences helped them consider children as competent ‘thinkers’ who were capable of engaging in philosophy in the classroom. They reported predominantly student-centred perspectives of children’s learning, although a process of adjudication (exploring disagreements and evidence for responses) was lacking in these responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Design is a ubiquitous, collaborative and highly material activity. Because of the embodied nature of the design profession, designers apply certain collaborative practices to enhance creativity in their everyday work. Within the domain of industrial design, we studied two educational design departments over a period of eight months. Using examples from our fieldwork, we develop our results around three broad themes related to collaborative practices that support the creativity of design professionals: 1) externalization, 2) use of physical space, and; 3) use of bodies. We believe that these themes of collaborative practices could provide new insights into designing technologies for supporting a varied set of design activities. We describe two conceptual collaborative systems derived from the results of our study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Playfulness, with non-intrusive elements, can be considered a useful resource for enhancing social awareness and community building within work organizations. Taking inspirations from the cultural probes approach, we developed organizational probes as a set of investigation tools that could provide useful information about employees’ everyday playful experiences within their work organizations. In an academic work environment, we applied our organizational probes over a period of three weeks. Based on the collected data we developed two design concepts for playful technologies in work environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A concise, convergent synthesis of (±)-frondosin B has been developed based on the application of a Stille–Heck reaction sequence of 2-chloro-5-methoxybenzo[b]furan-3-yl triflate and 2-(3-butenyl)-3-(trimethylstannyl)cyclohex-2-enone giving the racemic natural product in a 34% overall yield.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

alpha-Carboxylate radical anions are potential reactive intermediates in the free radical oxidation of biological molecules (e. g., fatty acids, peptides and proteins). We have synthesised well-defined alpha-carboxylate radical anions in the gas phase by UV laser photolysis of halogenated precursors in an ion-trap mass spectrometer. Reactions of isolated acetate ((center dot)CH(2)CO(2)) and 1-carboxylatobutyl (CH(3)CH(2)CH(2)(center dot)CHCO(2)(-)) radical anions with dioxygen yield carbonate (CO(3)(center dot-)) radical anions and this chemistry is shown to be a hallmark of oxidation in simple and alkyl-substituted cross-conjugated species. Previous solution phase studies have shown that C(alpha)-radicals in peptides, formed from free radical damage, combine with dioxygen to form peroxyl radicals that subsequently decompose into imine and keto acid products. Here, we demonstrate that a novel alternative pathway exists for two alpha-carboxylate C(alpha)-radical anions: the acetylglycinate radical anion (CH(3)C(O)NH(center dot)CHCO(2)(-)) and the model peptide radical anion, YGGFG(center dot-). Reaction of these radical anions with dioxygen results in concerted loss of carbon dioxide and hydroxyl radical. The reaction of the acetylglycinate radical anion with dioxygen reveals a two-stage process involving a slow, followed by a fast kinetic regime. Computational modelling suggests the reversible formation of the C(alpha) peroxyl radical facilitates proton transfer from the amide to the carboxylate group, a process reminiscent of, but distinctive from, classical proton-transfer catalysis. Interestingly, inclusion of this isomerization step in the RRKM/ME modelling of a G3SX level potential energy surface enables recapitulation of the experimentally observed two-stage kinetics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aromatic radicals form in a variety of reacting gas-phase systems, where their molecular weight growth reactions with unsaturated hydrocarbons are of considerable importance. We have investigated the ion-molecule reaction of the aromatic distonic N-methyl-pyridinium-4-yl (NMP) radical cation with 2-butyne (CH3C CCH3) using ion trap mass spectrometry. Comparison is made to high-level ab initio energy surfaces for the reaction of NMP and for the neutral phenyl radical system. The NMP radical cation reacts rapidly with 2-butyne at ambient temperature, due to the apparent absence of any barrier. The activated vinyl radical adduct predominantly dissociates via loss of a H atom, with lesser amounts of CH3 loss. High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry allows us to identify small quantities of the collisionally deactivated reaction adduct. Statistical reaction rate theory calculations (master equation/RRKM theory) on the NMP + 2-butyne system support our experimental findings, and indicate a mechanism that predominantly involves an allylic resonance-stabilized radical formed via H atom shuttling between the aromatic ring and the C-4 side-chain, followed by cyclization and/or low-energy H atom beta-scission reactions. A similar mechanism is demonstrated for the neutral phenyl radical (Ph center dot)+2-butyne reaction, forming products that include 3-methylindene. The collisionally deactivated reaction adduct is predicted to be quenched in the form of a resonance-stabilized methylphenylallyl radical. Experiments using a 2,5-dichloro substituted methyl-pyridiniumyl radical cation revealed that in this case CH3 loss from the 2-butyne adduct is favoured over H atom loss, verifying the key role of ortho H atoms, and the shuttling mechanism, in the reactions of aromatic radicals with alkynes. As well as being useful phenyl radical analogues, pyridiniumyl radical cations may form in the ionosphere of Titan, where they could undergo rapid molecular weight growth reactions to yield polycyclic aromatic nitrogen hydrocarbons (PANHs).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phenylperoxyl radical has long been accepted as a critical intermediate in the oxidation of benzene and an archetype for arylperoxyl radicals in combustion and atmospheric chemistry. Despite being central to many contemporary mechanisms underpinning these chemistries, reports of the direct detection or isolation of phenylperoxyl radicals are rare and there is little experimental evidence connecting this intermediate with expected product channels. We have prepared and isolated two charge-tagged phenyl radical models in the gas phase [i.e., 4-(N,N,N-trimethylammonium) phenyl radical cation and 4-carboxylatophenyl radical anion] and observed their reactions with dioxygen by ion-trap mass spectrometry. Measured reaction rates show good agreement with prior reports for the neutral system (k(2)[(Me3N+)C6H4 center dot + O-2] = 2.8 x 10(-11) cm(3) molecule(-1) s(-1), Phi = 4.9%; k(2)[(-O2C)C6H4 center dot + O-2] = 5.4 x 10(-1)1 cm(3) molecule(-1) s(-1), Phi = 9.2%) and the resulting mass spectra provide unequivocal evidence for the formation of phenylperoxyl radicals. Collisional activation of isolated phenylperoxyl radicals reveals unimolecular decomposition by three pathways: (i) loss of dioxygen to reform the initial phenyl radical; (ii) loss of atomic oxygen yielding a phenoxyl radical; and (iii) ejection of the formyl radical to give cyclopentadienone. Stable isotope labeling confirms these assignments. Quantum chemical calculations for both charge-tagged and neutral phenylperoxyl radicals confirm that loss of formyl radical is accessible both thermodynamically and entropically and competitive with direct loss of both hydrogen atom and carbon dioxide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neutral and cationic \[C-2,P-2] were investigated by a combination of mass spectrometry and electronic structure calculations. The cationic \[C-2,P-2](.+) potential energy surface including all relevant minima, transition states and fragmentation products was calculated at the B3LYP/6-311G(3df) level of theory. The most stable structures are linear PCCP.+ 1(.+) (E-rel=0 kcal mol(-1)), a three-membered ring with exocyclic phosphorus c-(PCC)-P 2(.+) (E-rel = 40.8 kcal mol(-1)), and the rhombic isomer 3(.+) (E-rel = 24.9 kcal mol(-1)). All fragmentation channels are significantly higher in energy than any of the \[C-2,P-2](.+) isomers. Experimentally, \[C-2,P-2](.+) ions are generated under high vacuum conditions by electron ionization of two different precursors. The fragmentation of \[C-2,P-2](.+) on collisional activation is preceded by rearrangement reactions which obscure the structural connectivity of the ions. The existence and the high stability of neutral \[C-2,P-2] were proved by a neutralization-reionization (NR) experiment. Although an unambiguous structural assignment of the neutral species cannot be drawn, both theory and experiment suggest that the long-sought neutral, linear PCCP 1 is generated using the NR technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ion (C2CHC2)(-) is formed in the gas phase by the process -C=C-CH(OCOR)-C=CD --> (C2CHC2)(-) + ('RDCO2') [R = H, Me or Et]; the ground state structure is a singlet, with C-2 nu symmetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ion (C6CH2)(.-) is formed in the gas phase by the process -C=C-C=C-C=CH2OEt --> (C6CH2)(.-) + EtO., and charge stripping of the product radical anion yields the carbenoid neutral C6CH2; this can be either a singlet (the ground state), which is best represented as the carbene :C=C=C=C=C=C=CH2, or a triplet; the adiabatic electron affinity and the dipole moment of the carbenoid neutral are calculated to be 2.82 eV and 7.33 D respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A bridgehead adamantyl peroxyl radical has been prepared and isolated in the gas phase by the reaction of a distonic radical anion with dioxygen in a quadrupole ion-trap mass spectrometer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ion-molecule reactions between molecular oxygen and peptide radicals in the gas phase demonstrate that radical migration occurs easily within large biomolecules without addition of collisional activation energy.