988 resultados para tourism Impacts
Resumo:
In multi-terminal high voltage direct current (HVDC) grids, the widely deployed droop control strategies will cause a non-uniform voltage deviation on the power flow, which is determined by the network topology and droop settings. This voltage deviation results in an inconsistent power flow pattern when the dispatch references are changed, which could be detrimental to the operation and seamless integration of HVDC grids. In this paper, a novel droop setting design method is proposed to address this problem for a more precise power dispatch. The effects of voltage deviations on the power sharing accuracy and transmission loss are analysed. This paper shows that there is a trade-off between minimizing the voltage deviation, ensuring a proper power delivery and reducing the total transmission loss in the droop setting design. The efficacy of the proposed method is confirmed by simulation studies.
Resumo:
Invasive alien aquatic species, including marine and freshwater macroinvertebrates, have become increasingly important in terms of both environmental and socio-economic impacts. In order to assess their environmental and economic costs, we applied the Generic Impact Scoring System (GISS) and performed a comparison with other taxa of invaders in Europe. Impacts were scored into six environmental and six socio-economic categories, with each category containing five impact levels. Among 49 aquatic macroinvertebrates, the most impacting species were the Chinese mitten crab, Eriocheir sinensis (Milne-Edwards, 1853) and the zebra mussel, Dreissena polymorpha (Pallas, 1771). The highest impacts found per GISS impact category were, separately; on ecosystems, through predation, as competitors, and on animal production. Eleven species have an impact score > 10 (high impact) and seven reach impact level 5 in at least one impact category (EU blacklist candidates), the maximum score that can be given is 60 impact points. Comparisons were drawn between aquatic macroinvertebrates and vertebrate invaders such as fish, mammals and birds, as well as terrestrial arthropods, revealing invasive freshwater macroinvertebrates to be voracious predators of native prey and damaging to native ecosystems compared with other taxa. GISS can be used to compare these taxa and will aid policy making and targeting of invasive species for management by relevant agencies, or to assist in producing species blacklist candidates.
Resumo:
Predicting the ecological impacts of damaging invasive species under relevant environmental contexts is a major challenge, for which comparative functional responses (the relationship between resource availability and consumer uptake rate) have great potential. Here, the functional responses of Gammarus pulex, an ecologically damaging invader in freshwaters in Ireland and other islands, were compared with those of a native trophic equivalent Gammarus duebeni celticus. Experiments were conducted at two dissolved oxygen concentrations (80 and 50 % saturation), representative of anthropogenic water quality changes, using two larval prey, blackfly (Simuliidae spp.) and mayfly (Baetis rhodani). Overall, G. pulex had higher Type II functional responses and hence predatory impacts than G. d. celticus and the functional responses of both predators were reduced by lowered oxygen concentration. However, this reduction was of lower magnitude for the invader as compared to the native. Further, the invader functional response at low oxygen was comparable to that of the native at high oxygen. Attack rates of the two predators were similar, with low oxygen reducing these attack rates, but this effect occurred more strongly for blackfly than mayfly prey. Handling times were significantly lower for the invader compared with the native, and significantly higher at low oxygen, however, the effect of lowered oxygen on handling times was minimal for the invader and pronounced for the native. Maximum feeding rates were significantly greater for the invader compared with the native, and significantly reduced at low oxygen, with this effect again lesser for the invader as compared to the native. The greater functional responses of the invader corroborate with its impacts on recipient macroinvertebrate communities when it replaces the native. Further, our experiments predict that the impact of the invader will be less affected than the native under altered oxygen regimes driven by anthropogenic influences.
Resumo:
In this work, the impact of conventional drilling and helical milling processes on the fatigue response Ti-6Al-4V (grade 5 titanium alloy) has been presented. Results show that the work pieces produced by helical milling has a 119% longer fatigue life compared with the drilled pieces under dry machining condition, and a 96% longer fatigue life for helical milled piece under lubricated condition. The use of cutting fluid has led to longer fatigue lives – 15% longer for drilling and 3% longer for helical milling. Other results such as the machined surface roughness, alloy surface and sub-surface microstructures have also been studied in details.
Resumo:
This paper examines the prospects for sustainable rural tourism within a rural development paradigm. Specifically, an adaptive management approach is proposed as a means of understanding and accommodating the different goals and interests that exist within multi-functional rural areas. This model allows priorities to change in line with particular situations while remaining sensitive to economic, environmental, social and cultural impacts. The proposed Mourne National Park in Northern Ireland, also designated an Area of Outstanding Natural Beauty (AONB), forms the backdrop for this study. Through a critique of a consultation process that was undertaken with the community the question is posed: can a sustainable rural tourism approach achieve meaningful community engagement and thereby reflect the needs of the community? Central to the analysis are the power differentials between the various partners participating in this model of governance. The conclusions consider implications for rural communities, revealing how trusting and meaningful relationships are central to facilitating collaboration, cooperation and adaptation.
Resumo:
Introduced browsing animals negatively impact New Zealand's indigenous ecosystems. Eradicating introduced browsers is currently unfeasible at large scales, but culling since the 1960s has successfully reduced populations to a fraction of their earlier sizes. Here we ask whether culling of ungulates has allowed populations of woody plant species to recover across New Zealand forests. Using 73 pairs of permanent fenced exclosure and unfenced control plots, we found rapid increases in sapling densities within exclosures located in disturbed forests, particularly if a seedling bank was already present. Recovery was slower in thinning stands and hampered by dense fern cover. We inferred ungulate diet preference from species recovery rates inside exclosures to test whether culling increased abundance of preferred species across a national network of 574 unfenced permanent forest plots. Across this network, saplings were observed irrespective of their preference to ungulates in the 1970s, but preferred species were rarer within disturbed sites in the 1990s after long-term culling and despite nationwide increases in sapling densities. This indicates that preferred species are relatively heavily affected by browsing after culling, presumably because remaining animals will increase consumption of preferred species as competition is reduced. Our results clearly suggest that culling will not return preferred plants to the landscape immediately, even given suitable conditions for regeneration. Complete removal of ungulates rather than simply reducing their densities may be required for recovery in heavily browsed temperate forests, but since this is only feasible at small spatial scales, management efforts must target sites of high conservation value. © 2012 Elsevier Ltd.
Resumo:
Background/Question/Methods
Assessing the large scale impact of deer populations on forest structure and composition is important because of their increasing abundance in many temperate forests. Deer are invasive animals and sometimes thought to be responsible for immense damage to New Zealand’s forests. We report demographic changes taking place among 40 widespread indigenous tree species over 20 years, following a period of record deer numbers in the 1950s and a period of extensive hunting and depletion of deer populations during the 1960s and 1970s.
Results/Conclusions
Across a network of 578 plots there was an overall 13% reduction in sapling density of our study species with most remaining constant and a few declining dramatically. The effect of suppressed recruitment when deer populations were high was evident in the small tree size class (30 – 80 mm dbh). Stem density decreased by 15% and species with the greatest annual decreases in small tree density were those which have the highest rates of sapling recovery in exclosures indicating that deer were responsible. Densities of large canopy trees have remained relatively stable. There were imbalances between mortality and recruitment rates for 23 of the 40 species, 7 increasing and 16 in decline. These changes were again linked with sapling recovery in exclosures; species which recovered most rapidly following deer exclusion had the greatest net recruitment deficit across the wider landscape, indicating recruitment suppression by deer as opposed to mortality induced by disturbance and other herbivores. Species are not declining uniformly across all populations and no species are in decline across their entire range. Therefore we predict that with continued deer presence some forests will undergo compositional changes but that none of the species tested will become nationally extinct.
Impacts of invasive browsers on demographic rates and forest structure in New Zealand. Available from: http://www.researchgate.net/publication/267285500_Impacts_of_invasive_browsers_on_demographic_rates_and_forest_structure_in_New_Zealand [accessed Oct 9, 2015].
Resumo:
Risks are an essential feature of future climate change impacts. We explore whether knowledge that climate change might be the source of increasing pine beetle impacts on public or private forests affects stated risk estimates of damage, elicited using the exchangeability method. We find that across subjects the difference between public and private forest status does not influence stated risks, but the group told that global warming is the cause of pine beetle damage has significantly higher risk perceptions than the group not given this information.
Resumo:
Milk in its natural form has a high food value, since it is comprised of a wide variety of nutrients which are essential for proper growth and maintenance of the human body. In recent decades, there has been an upsurge in milk consumption worldwide, especially in developing countries, and it is now forming a significant part of the diet for a high proportion of the global population. As a result of the increased demand, in addition to the growth in competition in the dairy market and the increasing complexity of the supply chain, some unscrupulous producers are indulging in milk fraud. This malpractice has become a common problem in the developing countries, which lack strict vigilance by food safety authorities. Milk is often subjected to fraud (by means of adulteration) for financial gain, but it can also be adulterated due to ill-informed attempts to improve hygiene conditions. Water is the most common adulterant used, which decreases the nutritional value of milk. If the water is contaminated, for example, with chemicals or pathogens, this poses a serious health risk for consumers. To the diluted milk, inferior cheaper materials may be added such as reconstituted milk powder, urea, and cane sugar, even more hazardous chemicals including melamine, formalin, caustic soda, and detergents. These additions have the potential to cause serious health-related problems. This review aims to investigate the impacts of milk fraud on nutrition and food safety, and it points out the potential adverse human health effects associated with the consumption of adulterated milk.
Resumo:
Understanding determinants of the invasiveness and ecological impacts of alien species is amongst the most sought-after and urgent research questions in ecology. Several studies have shown the value of comparing the functional responses (FRs) of alien and native predators towards native prey, however, the technique is under-explored with herbivorous alien species and as a predictor of invasiveness as distinct from ecological impact. Here, in China, we conducted a mesocosm experiment to compare the FRs among three herbivorous snail species: the golden apple snail, Pomacea canaliculata, a highly invasive and high impact alien listed in “100 of the World's Worst Invasive Alien Species”; Planorbarius corneus, a non-invasive, low impact alien; and the Chinese native snail, Bellamya aeruginosa, when feeding on four locally occurring plant species. Further, by using a numerical response equation, we modelled the population dynamics of the snail consumers. For standard FR parameters, we found that the invasive and damaging alien snail had the highest “attack rates” a, shortest “handling times” h and also the highest estimated maximum feeding rates, 1/hT, whereas the native species had the lowest attack rates, longest handling times and lowest maximum feeding rates. The non-invasive, low impact alien species had consistently intermediate FR parameters. The invasive alien species had higher population growth potential than the native snail species, whilst that of the non-invasive alien species was intermediate. Thus, while the comparative FR approach has been proposed as a reliable method for predicting the ecological impacts of invasive predators, our results further suggest that comparative FRs could extend to predict the invasiveness and ecological impacts of alien herbivores and should be explored in other taxa and trophic groups to determine the general utility of the approach.
Resumo:
Background: Deficiencies in effective flukicide options and growing issues with drug resistance make current strategies for liver fluke control unsustainable, thereby promoting the need to identify and validate new control targets in Fasciola spp. parasites. Calmodulins (CaMs) are small calcium-sensing proteins with ubiquitous expression in all eukaryotic organisms and generally use fluctuations in intracellular calcium levels to modulate cell signalling events. CaMs are essential for fundamental processes including the phosphorylation of protein kinases, gene transcription, calcium transport and smooth muscle contraction. In the blood fluke Schistosoma mansoni, calmodulins have been implicated in egg hatching, miracidial transformation and larval development. Previously, CaMs have been identified amongst liver fluke excretory-secretory products and three CaM-like proteins have been characterised biochemically from adult Fasciola hepatica, although their functions remain unknown.
Methods: In this study, we set out to investigate the biological function and control target potential of F. hepatica CaMs (FhCaMs) using RNAi methodology alongside novel in vitro bioassays.
Results: Our results reveal that: (i) FhCaMs are widely expressed in parenchymal cells throughout the forebody region of juvenile fluke; (ii) significant transcriptional knockdown of FhCaM1-3 was inducible by exposure to either long (~200 nt) double stranded (ds) RNAs or 27 nt short interfering (si) RNAs, although siRNAs were less effective than long dsRNAs; (iii) transient long dsRNA exposure-induced RNA interference (RNAi) of FhCaMs triggered transcript knockdown that persisted for ≥ 21 days, and led to detectable suppression of FhCaM proteins; (iv) FhCaM RNAi significantly reduced the growth of juvenile flukes maintained in vitro; (v) FhCaM RNAi juveniles also displayed hyperactivity encompassing significantly increased migration; (vi) both the reduced growth and increased motility phenotypes were recapitulated in juvenile fluke using the CaM inhibitor trifluoperazine hydrochloride, supporting phenotype specificity.
Conclusions: These data indicate that the Ca(2+)-modulating functions of FhCaMs are important for juvenile fluke growth and movement and provide the first functional genomics-based example of a growth-defect resulting from gene silencing in liver fluke. Whilst the phenotypic impacts of FhCaM silencing on fluke behaviour do not strongly support their candidature as new flukicide targets, the growth impacts encourage further consideration, especially in light of the speed of juvenile fluke growth in vivo.
Resumo:
This paper critically examines the intersections of global tourism and fitness in the Marathon des Sables, an annual ultramarathon in the Sahara desert in which over a thousand athletes run the equivalent of five marathons in six days. It demonstrates how the globalization of health and fitness resonates with familiar Western productions of exotic cultures for the purposes of tourist consumption. Of particular interest here is how established colonial asymmetries are recast in a neoliberal context as runners test their resilience, endurance and strength against an ‘extreme’ Saharan landscape. While the paper calls attention to these asymmetries, it is more concerned with troubling reductive colonial encounters in order to reveal their instability, heterogeneity and ambivalence. Indeed, the central conceit of the Marathon des Sables – that superior Western fitness regimes and technologies will dominate the race – is inverted by the overwhelming success of Moroccan runners and disaggregated by the biopolitical regulation of elite running bodies. These unexpected intersections of global tourism and fitness demand further attention because they reconfigure our received notions of who (and what) is capable of exerting agency in postcolonial encounters.