918 resultados para satellite-to-ground laser communications
Resumo:
A 1.55-mu m ridge DFB laser and electroabsorption modulator monolithically integrated with a buried-ridge-stripe dual-waveguide spot-size converter at the output port for low-loss coupling to a cleaved single-mode optical fiber was fabricated by means of selective area growth, quantum well intermixing and dual-core technologies. These devices exhibit threshold current of 28 mA, side mode suppression ratio of 38.0 dB, 3-dB modulation bandwidth of 12.0 GHz, modulator extinction ratios of 25.0 dB dc. The output beam divergence angles of the spot-size converter in the horizontal and vertical directions are as small as 8.0 degrees x 12.6 degrees, respectively, resulting in 3.2 dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
Width varied quantum wells show a more flat and wide gain spectrume (about 115nm) than that of identical miltiple quantum well. A new fabricating method was demonstrated in this paper to realize two different Bragg grating in an selectable DFB laser based on this material grown identical chip using traditional holographic exposure. A wavelength by MOVPE was presented. Two stable distinct single longitudinal mode of 1510nm and 1530nm with SMSR of 45 dB were realized.
Resumo:
An extended subtraction method of scattering parameters for characterizing laser diode is introduced in this paper. The intrinsic small-signal response can be directly extracted from the measured transmission coefficients of laser diode by the method. However the chip temperature may change with the injection bias current due to thermal effects, which causes inaccurate intrinsic response by our method. Therefore, how to determine the chip temperature and keep the laser chip adiabatic is very critical when extracting the intrinsic response. To tackle these problems, the dependence of the lasing wavelength of the laser diode on the chip temperature is investigated, and an applicable measurement setup which keeps the chip temperature stable is presented. The scattering parameters of laser diode are measured on diabatic and adiabatic conditions, and the extracted intrinsic responses for both conditions are compared. It is found that the adiabatic intrinsic responses are evidently superior to those without thermal consideration. The analysis indicates that inclusion of thermal effects is necessary to acquire accurate intrinsic response.
Resumo:
A 1.55 mu m InGaAsP-InP partly gain-coupled two-section DFB self-pulsation laser (SPL) with a varied ridge width has been fabricated. The laser produces self-pulsations with a frequency tuning range of more than 135 GHz. All-optical clock recovery from 40 Gb/s degraded data streams has been demonstrated. Successful lockings of the device at frequencies of 30 GHz, 40 GHz, 50 GHz, and 60 GHz to a 10 GHz sidemode injection are also conducted, which demonstrates the capability of the device for all-optical clock recovery at different frequencies. This flexibility of the device is highly desired for practical uses. Crown Copyright
Resumo:
IEEE Computer Society
Resumo:
The characteristics of the steady-state and the transient response to external light excitation of a common-cavity two-section (CCTS) bistable semiconductor laser is investigated. The results on the relation of light output versus light input, the wavelength match, optical amplification and optical switching are presented. Experimental results are compared to the results of a computer simulation.
Resumo:
Continuous wave operation of a semiconductor laser diode based on five stacks of InAs quantum dots (QDs) embedded within strained InGaAs quantum wells as an active region is demonstrated. At room temperature, 355-mW output power at ground state of 1.33-1.35 microns for a 20-micron ridge-waveguide laser without facet coating is achieved. By optimizing the molecular beam epitaxy (MBE) growth conditions, the QD density per layer is raised to 4*10^(10) cm^(-2). The laser keeps lasing at ground state until the temperature reaches 65 Celsius degree.
Resumo:
The theoretical investigation of the coupling efficiency of a laser diode to a single mode fiber via a hemispherical lens on the tip of the tapered fiber in the presence of possible transverse offset and angular mismatch is reported.Without the misalignment,coupling efficiency increases with the decreasing of taper length.With the misalignment,this relation is that the coupling efficiency decreases with each kind of offset.
Resumo:
In a practical coupling system, a cylindrical microlens is used to collimate the emission of a high powerlaser diode (LD) in the dimension perpendicular to the junction plane. Using passive alignment, the LD isplaced in the focus of the cylindrical microlens generally, regardless of the performance of the multimodeoptical fiber and the LD. In this paper, a more complete analysis is arrived at by ray-tracing technique,by which the angle θ of the ray after refraction is computed as a function of the angle θo of the ray beforerefraction. The focus of the cylindrical microlens is not always the optimal position of the LD. In fact, inorder to achieve a higher coupling efficiency, the optimal distance from the LD to the cylindrical microlensis dependent on not only the radius R and the index of refraction n of the cylindrical microlens, but alsothe divergence angle of the LD in the dimension perpendicular to the junction plane and the numericalaperture (NA) of the multimode optical fiber. The results of this discussion are in good agreement withexperimental results.
Resumo:
A piece of multimode optical fiber with a low numerical aperture (NA) is used as an inexpensive microlens to collimate the output radiation of a laser diode bar in the high numerical aperture (NA) direction. The emissions of the laser diode bar are coupled into multimode fiber array. The radiation from individual ones of emitter regions is optically coupled into individual ones of fiber array. Total coupling efficiency and fiber output power are 75% and 15W, respectively.
Resumo:
Optical modes of AlGaInP laser diodes with real refractive index guided self-aligned (RISA) structure were analyzed theoretically on the basis of two-dimension semivectorial finite-difference methods (SV-FDMs) and the computed simulation results were presented. The eigenvalue and eigenfunction of this two-dimension waveguide were obtained and the dependence of the confinement factor and beam divergence angles in the direction of parallel and perpendicular to the pn junction on the structure parameters such as the number of quantum wells, the Al composition of the cladding layers, the ridge width, the waveguide thickness and the residual thickness of the upper P-cladding layer were investigated. The results can provide optimized structure parameters and help us design and fabricate high performance AlGaInP laser diodes with a low beam aspect ratio required for optical storage applications.
Resumo:
An electrical-to-green efficiency of more than 10% was demonstrated by intracavity-frequency-doubling a Q-switched diode-side-pumped Nd:YAG laser with a type II lithium triborate (LBO) crystal in a straight plano-concave cavity. An average power of 69.2 W at 532 nm was generated when electrical input power was 666 W. The corresponding electrical-to-green conversion efficiency is 10.4%. To the best of our knowledge, this is the highest electrical-to-green efficiency of second harmonic generation laser systems with side-pumped laser modules, ever reported. At about 66 W of green output power, the power fluctuation over 4 hours was better than +/-0.86%.
Resumo:
Microphotoluminescence (mu-PL) investigation has been performed at room temperature on InAs quantum dot (QD) vertical cavity surface emitting laser (VCSEL) structure in order to characterize the QD epitaxial structure which was designed for 1.3 mu m wave band emission. Actual and precise QD emission spectra including distinct ground state (GS) and excited state (ES) transition peaks are obtained by an edge-excitation and edge-emission (EEEE) mu-PL configuration. Conventional photoluminescence methods for QD-VCSELs structure analysis are compared and discussed, which indicate the EEEE mu-PL is a useful tool to determine the optical features of the QD active region in an as-grown VCSEL structure. Some experimental results have been compared with simulation results obtained with the aid of the plane-wave admittance method. After adjustment of epitaxial growth according to EEEE mu-PL measurement results, QD-VCSEL structure wafer with QD GS transition wavelength of 1300 nm and lasing wavelength of 1301 nm was obtained.