919 resultados para Triple Denial
Resumo:
Studies on InGaN multiple quantum well blue-violet laser diodes have been reported. Laser structures with long-period multiple quantum wells were grown by metal-organic chemical vapor deposition. Triple-axis X-ray diffraction (TAXRD) measurements show that the multiple quantum wells were high quality. Ridge waveguide laser diodes were fabricated with cleaved facet mirrors. The laser diodes lase at room temperature under a pulsed current. A threshold current density of 3.3 kA/cm(2) and a characteristic temperature To of 145 K were observed for the laser diode.
Resumo:
To fabricate nitride-based ultraviolet optoelectronic devices, a deposition process for high-Al-composition AlGaN (Al content > 50%) films with reduced dislocation densities must be developed. This paper describes the growth of high-Al-composition AlGaN film on (0001) sapphire via a LT AIN nucleation layer by low pressure metalorganic chemical vapor deposition (LPMOCVD). The influence of the low temperature AIN buffer layer thickness on the high-Al-content AlGaN epilayer is investigated by triple-axis X-ray diffraction (TAXRD), scanning electron microscopy (SEM), and optical transmittance. The results show that the buffer thickness is a key parameter that affects the quality of the AlGaN epilayer. An appropriate thickness results in the best structural properties and surface morphology. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Both cracked and crack-free GaN/Al0.55Ga0.45N multiple quantum wells (MQWs) grown on GaN template by metalorganic chemical vapor deposition have been studied by triple-axis X-ray diffraction, grazing-incidence X-ray reflectivity, atomic force microscope, photoluminescence spectroscopy and low-energy positron annihilation spectroscopy. The experimental results show that cracks generation not only deteriorates the surface morphology, but also leads to a period dispersion and roughens the interfaces of MQWs. The mean density of dislocations in MQWs, determined from the average full-width at half-maximum of to-scan of each satellite peak, has been significantly enhanced by the cracks generation. Furthermore, the measurement of annihilation-line Doppler broadening reveals a higher concentration of negatively charged vacancies in the cracked MQWs. The combination of these vacancies and the high density of edge dislocations are assumed to contribute to the highly enhanced yellow luminescence in the cracked sample. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
An extended technique derived from triple-axis diffraction setup was proposed to measure lattice parameters of cubic GaN(c-GaN) films. The fully relaxed lattice parameters of c-GaN are determined to be 4.5036+0.0004 Angstrom, which is closer to the values of a hypothetical perfect crystal. The speculated zero setting correction (Deltatheta) is very slight and within the range of the accuracy of measurement. Additionally, we applied this method to analyze strain of four different kinds of c-GaN samples. It is found that in-plane strain caused by large lattice mismatch and thermal expansion coefficients mismatch directly influence the epilayer growth at high temperatures, indicating that the relaxation of tensile strain after thermal annealing helps to improve the crystalline quality of c-GaN films and optical properties. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Structural characteristics of cubic GaN epilayers grown on GaAs(001) were studied using X-ray double-crystal diffraction technique. The structure factors of cubic GaN(002) and (004) components are approximately identical. However, the integrated intensities of the rocking curve for cubic (002) components are over five times as those of (004) components. The discrepancy has been interpreted in detail considering other factors. In the conventional double crystal rocking curve, the peak broadening includes such information caused by the orientation distribution (mosaicity) and the distribution of lattice spacing. These two kinds of distributions can be distinguished by the triple-axis diffraction in which an analyser crystal is placed in front of the detector. Moreover, the peak broadening was analysed by reciprocal lattice construction and Eward sphere. By using triple-axis diffraction of cubic (002) and (113) components, domain size and dislocation density were estimated. The fully relaxed lattice parameter of cubic GaN was determined to be about 0.451 +/- 0.001nm.
Resumo:
Strains in cubic GaN films grown on GaAs (001) were measured by a triple-axis x-ray diffraction method. Residual strains in the as-grown epitaxial films were in compression, contrary to the predicted tensile strains caused by large lattice mismatch between epilayers and GaAs substrates (20%). It was also found that the relief of strains in the GaN films has a complicated dependence on the growth conditions. We interpreted this as the interaction between the lattice mismatch and thermal mismatch stresses. The fully relaxed lattice constants of cubic GaN are determined to be 4.5038 +/- 0.0009 Angstrom, which is in excellent agreement with the theoretical prediction of 4.503 Angstrom. (C) 2000 American Institute of Physics. [S0021-8979(00)07918-4].
Resumo:
Cubic GaN was grown on GaAs(100) by low pressure metal organic chemical vapor deposition (MOCVD). X-ray diffraction, scanning electron microscope (SEM) and photoluminescence (PL) spectra were performed to characterize the quality of the GaN film. The PL spectra of cubic GaN thin films being thicker than 1.5 mu m were reported. Triple-crystal diffraction to analyze orientation distributions and strain of the thin films was also demonstrated.
Resumo:
Under high concentration the temperature of photovoltaic solar cells is very high. It is well known that the efficiency and performance of photovoltaic solar cells decrease with the increase of temperature. So cooling is indispensable for a concentrator photovoltaic solar cell at high concentration. Usually passive cooling is widely considered in a concentrator system. However, the thermal conduction principle of concentrator solar cells under passive cooling is seldom reported. In this paper, GaInP/GaAs/Ge triple junction solar cells were fabricated using metal organic chemical vapor deposition technique. The thermal conductivity performance of monolithic concentrator GaInP/GaAs/Ge cascade solar cells under 400X concentration with a heat sink were studied by testing the surface and backside temperatures of solar cells. The tested result shows that temperature difference between both sides of the solar cells is about 1K. A theoretical model of the thermal conductivity and thermal resistance of the GaInP/GaAs/Ge triple junction solar cells was built, and the calculation temperature difference between both sides of the solar cells is about 0.724K which is consistent with the result of practical test. Combining the theoretical model and the practical testing with the upper surface temperature of tested 310K, the temperature distribution of the solar cells was researched.
Resumo:
The photovoltaic conversion efficiency for monolithic GaInP/GaInAs/Ge triple-junction cell with various bandgap combination (300 suns, AM1.5d) was theoretically calculated. An impressive improvement on conversion efficiency was observed for a bandgap combination of 1.708, 1.194, and 0.67 eV. A theoretical investigation was carried out on the effect of dislocation on the metamorphic structure's efficiency by regarding dislocation as minority-carrier recombination center. The results showed that only when dislocation density was less than 1.6x10(6) cm(-2), can this metamorphic combination exhibit its efficiency advantage over the fully-matched combination. In addition, we also briefly evaluated the lattice misfit dependence of the dislocation density for a group of metamorphic triple-junction system, and used it as guidance for the choice of the proper cell structure.
Resumo:
分组密码作为现代密码学的一个重要组成部分,是目前最重要和流行的一种数据加密技术,有着非常广泛的应用。此外,近年来分组密码或其组件还经常作为基础模块用于构造Hash函数,MAC算法等。因此对分组密码安全性的分析以及设计安全高效的分组密码算法,在理论研究及实际应用中都有着非常重要的意义。本文的研究内容主要包括两个方面:对现有常用分组密码的安全性分析,以及分组密码及其组件的设计。这两个方面是密不可分,相互融合的。通常都是利用算法存在的弱点或算法设计特点,提出新的密码分析算法。而在算法设计过程中,正是从密码分析获取经验,掌握设计算法的技巧和避免可能存在的缺陷。 本文首先对分组密码分析方法作了大量的调查和研究,在此基础上分析了一些国内外常用和有影响的分组密码,得到了一系列有价值的分析结果。并在密码分析工作的经验基础上,结合现有密码设计理论,在分组密码及其组件的设计方面做了比较深入的研究。本文的主要成果包括: (1) DES算法的分析。DES算法是迄今最重要的分组密码算法之一,目前在一些金融领域,DES和Triple-DES仍被广泛使用着。本文考察了DES算法针对Boomerang攻击和Rectangle攻击的安全性。通过利用DES算法各轮的最优差分路径及其概率,分别给出了这两种攻击方法对DES的攻击算法。 (2) Rijndael算法的分析。Rijndael算法是高级加密标准AES的原型。本文针对大分组Rijndael算法的各个不同版本,利用算法行移位和列混淆变换的一些密码特性,改进了原有的不可能差分攻击结果,极大的降低了攻击的数据和时间复杂度。同时还分别构造了一些新的更长轮的不可能差分路径,利用这些路径给出了一系列对大分组Rijndael算法的改进的不可能差分攻击,这些结果是目前已知的对该算法的最好攻击结果。 (3) SMS4算法的分析。SMS4算法是中国公布的用于无线局域网产品保护的算法。本文首先构造了SMS4算法的一类5轮循环差分特征,利用该特征分别给出了对16轮SMS4算法的矩阵攻击和对21轮SMS4算法的差分分析。随后考察了SMS4算法抵抗差分故障攻击的能力,基于字节故障模型,结合实验指出需要32次故障诱导来恢复全部密钥。后续的工作又进一步将结果改进为只需要进行一次故障诱导再结合2^{44}次密钥搜索即可恢复全部密钥。 (4) CLEFIA密码算法的分析。CLEFIA算法是索尼公司于2007年提出的用于产品版权保护和认证的分组密码算法。针对CLEFIA算法,本文构造了一条概率为1的5轮截断差分特征,再结合其扩散矩阵的密码特性构造了一条3轮线性逼近。随后利用这两条路径组成的8轮差分-线性区分器,给出了对10轮CLEFIA算法的有效的差分-线性攻击。 (5) 分组密码结构的设计及其应用。本文提出了两种新的分组密码结构,并指出了其与原有结构相比的优势,同时分别评估了这两种结构针对差分分析和线性分析等常用密码分析方法的安全性。基于这两个密码结构,结合部分密码组件的设计和测试工作,本文还完成了两个分组密码算法的概要设计,并简要评估了它们的实现效率及针对现有的几种主要密码分析方法的安全性。
Resumo:
作为加密标准,DES(data encryption standard)算法虽然已被AES(advanced encryption standard)算法所取代,但其仍有着不可忽视的重要作用.在一些领域,尤其是金融领域,DES和Triple DES仍被广泛使用着.而近年来又提出了一些新的密码分析方法,其中,Rectangle攻击和Boomerang攻击已被证明是非常强大而有效的.因此,有必要重新评估DES算法抵抗这些新分析方法的能力.研究了DES算法针对Rectangle攻击和Boomerang攻击的安全性.利用DES各轮最优差分路径及其概率,分别得到了对12轮DES的Rectangle攻击和对11轮DES的Boomerang攻击.攻击结果分别为:利用Rectangle攻击可以攻击到12轮DES,数据复杂度为2~(62)。个选择明文,时间复杂度为2~(42)次12轮加密;利用Boomerang攻击可以攻击到11轮DES,数据复杂度为2~(58)个适应性选择明密文,时间复杂度为2~(38)次11轮加密.由于使用的都是DES各轮的最优差分路径,所以可以相信,该结果是Rectangle攻击和Boomerang攻击对DES所能达到的最好结果.
Resumo:
The analytic solutions of coupled-mode equations of four-wave mixings (FWMs) are achieved by means of the undepleted approximation and the perturbation method. The self-stability mechanism of the FWM processes is theoretically proved and is applicable to design a new kind of triple-wavelength erbium-doped fiber lasers. The proposed fiber lasers with excellent stability and uniformity are demonstrated by using a flat-near-zero-dispersion high-nonlinear photonic-crystal-fiber. The significant excellence is analyzed in theory and is proved in experiment. Our fiber lasers can stably lase three waves with the power ripple of less than 0.4 dB. (c) 2005 Elsevier B.V. All rights reserved.