958 resultados para Time measurements.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. In the field of information technology (IT) time pressure is common. Working with tight deadlines together on the same task increases the risk of social stressors referring to tensions and conflicts at work. Purpose. This field study tested both the association of time pressure and social stressors with blood pressure during work. Method. Seven employees – staff of a small IT enterprise – participated in repeated ambulatory blood pressure measurements over the course of one week. Time pressure and social stressors at work were assessed by questionnaire at the beginning of the study. Results. Multilevel regression analyses of 138 samples revealed higher levels of time pressure to be related to marginally significant increases in mean arterial blood pressure at noon and in the afternoon. In addition, higher levels of social stressors at work were significantly associated to elevated mean arterial pressure in the afternoon. Conclusion. Findings support the view that threats to the social self play an important role in occupational health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. To evaluate the diagnostic benefit of real-time elastography (RTE) in clinical routine. Strain indices (SI) for benign and malignant tumors were assessed. Methods. 100 patients with 110 focal breast lesions were retrieved. Patients had mammography (MG), ultrasound (US), and, if necessary, MRI. RTE was conducted after ultrasound. Lesions were assessed with BI-RADS for mammography and ultrasound. Diagnosis was established with histology or follow-up. Results. SI for BI-RADS 2 was 1.71 ± 0.86. Higher SI (2.21 ± 1.96) was observed for BI-RADS 3 lesions. SI of BI-RADS 4 and 5 lesions were significantly higher (16.92 ± 20.89) and (19.54 ± 10.41). 31 malignant tumors exhibited an average SI of 16.13 ± 14.67; SI of benign lesions was 5.29 ± 11.87 (P value <0.0001). ROC analysis threshold was >3.8 for malignant disease. Sensitivity of sonography was 90.3% (specificity 78.5%). RTE showed a sensitivity of 87.1% (specificity 79.7%). Accuracy of all modalities combined was 96.8%. In BI-RADS 3 lesions RTE was able to detect all malignant lesions (sensitivity 100%, specificity 92.9%, and accuracy 93.9%). Conclusions. RTE increased sensitivity and specificity for breast cancer detection when used in combination with ultrasound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of spin correlation in top quark pair production are presented using data collected with the ATLAS detector at the LHC with proton-proton collisions at a center-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 4.6  fb −1 . Events are selected in final states with two charged leptons and at least two jets and in final states with one charged lepton and at least four jets. Four different observables sensitive to different properties of the top quark pair production mechanism are used to extract the correlation between the top and antitop quark spins. Some of these observables are measured for the first time. The measurements are in good agreement with the Standard Model prediction at next-to-leading-order accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since no single experimental or modeling technique provides data that allow a description of transport processes in clays and clay minerals at all relevant scales, several complementary approaches have to be combined to understand and explain the interplay between transport relevant phenomena. In this paper molecular dynamics simulations (MD) were used to investigate the mobility of water in the interlayer of montmorillonite (Mt), and to estimate the influence of mineral surfaces and interlayer ions on the water diffusion. Random Walk (RW) simulations based on a simplified representation of pore space in Mt were used to estimate and understand the effect of the arrangement of Mt particles on the meso- to macroscopic diffusivity of water. These theoretical calculations were complemented with quasielastic neutron scattering (QENS) measurements of aqueous diffusion in Mt with two pseudo-layers of water performed at four significantly different energy resolutions (i.e. observation times). The size of the interlayer and the size of Mt particles are two characteristic dimensions which determine the time dependent behavior of water diffusion in Mt. MD simulations show that at very short time scales water dynamics has the characteristic features of an oscillatory motion in the cage formed by neighbors in the first coordination shell. At longer time scales, the interaction of water with the surface determines the water dynamics, and the effect of confinement on the overall water mobility within the interlayer becomes evident. At time scales corresponding to an average water displacement equivalent to the average size of Mt particles, the effects of tortuosity are observed in the meso- to macroscopic pore scale simulations. Consistent with the picture obtained in the simulations, the QENS data can be described using a (local) 3D diffusion at short observation times, whereas at sufficiently long observation times a 2D diffusive motion is clearly observed. The effects of tortuosity measured in macroscopic tracer diffusion experiments are in qualitative agreement with RW simulations. By using experimental data to calibrate molecular and mesoscopic theoretical models, a consistent description of water mobility in clay minerals from the molecular to the macroscopic scale can be achieved. In turn, simulations help in choosing optimal conditions for the experimental measurements and the data interpretation. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After attending this presentation, attendees will: (1) understand how body height from computed tomography data can be estimated; and, (2) gain knowledge about the accuracy of estimated body height and limitations. The presentation will impact the forensic science community by providing knowledge and competence which will enable attendees to develop formulas for single bones to reconstruct body height using postmortem Computer Tomography (p-CT) data. The estimation of Body Height (BH) is an important component of the identification of corpses and skeletal remains. Stature can be estimated with relative accuracy via the measurement of long bones, such as the femora. Compared to time-consuming maceration procedures, p-CT allows fast and simple measurements of bones. This study undertook four objectives concerning the accuracy of BH estimation via p-CT: (1) accuracy between measurements on native bone and p-CT imaged bone (F1 according to Martin 1914); (2) intra-observer p-CT measurement precision; (3) accuracy between formula-based estimation of the BH and conventional body length measurement during autopsy; and, (4) accuracy of different estimation formulas available.1 In the first step, the accuracy of measurements in the CT compared to those obtained using an osteometric board was evaluated on the basis of eight defleshed femora. Then the femora of 83 female and 144 male corpses of a Swiss population for which p-CTs had been performed, were measured at the Institute of Forensic Medicine in Bern. After two months, 20 individuals were measured again in order to assess the intraobserver error. The mean age of the men was 53±17 years and that of the women was 61±20 years. Additionally, the body length of the corpses was measured conventionally. The mean body length was 176.6±7.2cm for men and 163.6±7.8cm for women. The images that were obtained using a six-slice CT were reconstructed with a slice thickness of 1.25mm. Analysis and measurements of CT images were performed on a multipurpose workstation. As a forensic standard procedure, stature was estimated by means of the regression equations by Penning & Riepert developed on a Southern German population and for comparison, also those referenced by Trotter & Gleser “American White.”2,3 All statistical tests were performed with a statistical software. No significant differences were found between the CT and osteometric board measurements. The double p-CT measurement of 20 individuals resulted in an absolute intra-observer difference of 0.4±0.3mm. For both sexes, the correlation between the body length and the estimated BH using the F1 measurements was highly significant. The correlation coefficient was slightly higher for women. The differences in accuracy of the different formulas were small. While the errors of BH estimation were generally ±4.5–5.0cm, the consideration of age led to an increase in accuracy of a few millimetres to about 1cm. BH estimations according to Penning & Riepert and Trotter & Gleser were slightly more accurate when age-at-death was taken into account.2,3 That way, stature estimations in the group of individuals older than 60 years were improved by about 2.4cm and 3.1cm.2,3 The error of estimation is therefore about a third of the common ±4.7cm error range. Femur measurements in p-CT allow very accurate BH estimations. Estimations according to Penning led to good results that (barely) come closer to the true value than the frequently used formulas by Trotter & Gleser “American White.”2,3 Therefore, the formulas by Penning & Riepert are also validated for this substantial recent Swiss population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cataloging geocentric objects can be put in the framework of Multiple Target Tracking (MTT). Current work tends to focus on the S = 2 MTT problem because of its favorable computational complexity of O(n²). The MTT problem becomes NP-hard for a dimension of S˃3. The challenge is to find an approximation to the solution within a reasonable computation time. To effciently approximate this solution a Genetic Algorithm is used. The algorithm is applied to a simulated test case. These results represent the first steps towards a method that can treat the S˃3 problem effciently and with minimal manual intervention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

67P/Churyumov-Gerasimenko (67P) is a Jupiter-family comet and the object of investigation of the European Space Agency mission Rosetta. This report presents the first full 3D simulation results of 67P’s neutral gas coma. In this study we include results from a direct simulation Monte Carlo method, a hydrodynamic code, and a purely geometric calculation which computes the total illuminated surface area on the nucleus. All models include the triangulated 3D shape model of 67P as well as realistic illumination and shadowing conditions. The basic concept is the assumption that these illumination conditions on the nucleus are the main driver for the gas activity of the comet. As a consequence, the total production rate of 67P varies as a function of solar insolation. The best agreement between the model and the data is achieved when gas fluxes on the night side are in the range of 7% to 10% of the maximum flux, accounting for contributions from the most volatile components. To validate the output of our numerical simulations we compare the results of all three models to in situ gas number density measurements from the ROSINA COPS instrument. We are able to reproduce the overall features of these local neutral number density measurements of ROSINA COPS for the time period between early August 2014 and January 1 2015 with all three models. Some details in the measurements are not reproduced and warrant further investigation and refinement of the models. However, the overall assumption that illumination conditions on the nucleus are at least an important driver of the gas activity is validated by the models. According to our simulation results we find the total production rate of 67P to be constant between August and November 2014 with a value of about 1 × 10²⁶ molecules s⁻¹.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comets contain the best-preserved material from the beginning of our planetary system. Their nuclei and comae composition reveal clues about physical and chemical conditions during the early solar system when comets formed. ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) onboard the Rosetta spacecraft has measured the coma composition of comet 67P/Churyumov-Gerasimenko with well-sampled time resolution per rotation. Measurements were made over many comet rotation periods and a wide range of latitudes. These measurements show large fluctuations in composition in a heterogeneous coma that has diurnal and possibly seasonal variations in the major outgassing species: water, carbon monoxide, and carbon dioxide. These results indicate a complex coma-nucleus relationship where seasonal variations may be driven by temperature differences just below the comet surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interiors of comets contain some of the most pristine material in the solar system. Comet 73P/Schwassmann–Wachmann 3, discovered in 1930, is a Jupiter-family comet with a 5.34-year period. This comet split into 5 fragments in 1995 and disintegrated into nearly 70 major pieces in 2006. In 2006 May and June, recently ionized cometary particles originating from fragments including and surrounding some of these major objects were collected with the ACE/SWICS and Wind/STICS sensors. Due to a combination of the instrument characteristics and the close proximity of the fragments passing between those spacecraft and the Sun, unique measurements regarding the charge state composition and the elemental abundances of both cometary and heliospheric plasma were made during that time. The cometary material released from some of these fragments can be identified by the concentrations of water-group pickup ions having a mass-per-charge ratio of 16–18 amu e−1, indicating that while these fragments are small, they are still actively sublimating. We present an analysis of cometary composition, spatial distribution, and heliospheric interactions, with a focus on helium, C+/O+, and water-group ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: Near-infrared spectroscopy (NIRS) enables the non-invasive measurement of changes in hemodynamics and oxygenation in tissue. Changes in light-coupling due to movement of the subject can cause movement artifacts (MAs) in the recorded signals. Several methods have been developed so far that facilitate the detection and reduction of MAs in the data. However, due to fixed parameter values (e.g., global threshold) none of these methods are perfectly suitable for long-term (i.e., hours) recordings or were not time-effective when applied to large datasets. We aimed to overcome these limitations by automation, i.e., data adaptive thresholding specifically designed for long-term measurements, and by introducing a stable long-term signal reconstruction. Our new technique (“acceleration-based movement artifact reduction algorithm”, AMARA) is based on combining two methods: the “movement artifact reduction algorithm” (MARA, Scholkmann et al. Phys. Meas. 2010, 31, 649–662), and the “accelerometer-based motion artifact removal” (ABAMAR, Virtanen et al. J. Biomed. Opt. 2011, 16, 087005). We describe AMARA in detail and report about successful validation of the algorithm using empirical NIRS data, measured over the prefrontal cortex in adolescents during sleep. In addition, we compared the performance of AMARA to that of MARA and ABAMAR based on validation data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through dedicated measurements in the optical regime we demonstrate that ptychography can be applied to reconstruct complex-valued object functions that vary with time from a sequence of spectral measurements. A probe pulse of approximately 1 ps duration, time delayed in increments of 0.25 ps, is shown to recover dynamics on a ten times faster time scale with an experimental limit of approximately 5 fs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new methodology based on combining active and passive remote sensing and simultaneous and collocated radiosounding data to study the aerosol hygroscopic growth effects on the particle optical and microphysical properties is presented. The identification of hygroscopic growth situations combines the analysis of multispectral aerosol particle backscatter coefficient and particle linear depolarization ratio with thermodynamic profiling of the atmospheric column. We analyzed the hygroscopic growth effects on aerosol properties, namely the aerosol particle backscatter coefficient and the volume concentration profiles, using data gathered at Granada EARLINET station. Two study cases, corresponding to different aerosol loads and different aerosol types, are used for illustrating the potential of this methodology. Values of the aerosol particle backscatter coefficient enhancement factors range from 2.1 ± 0.8 to 3.9 ± 1.5, in the ranges of relative humidity 60–90 and 40–83%, being similar to those previously reported in the literature. Differences in the enhancement factor are directly linked to the composition of the atmospheric aerosol. The largest value of the aerosol particle backscatter coefficient enhancement factor corresponds to the presence of sulphate and marine particles that are more affected by hygroscopic growth. On the contrary, the lowest value of the enhancement factor corresponds to an aerosol mixture containing sulphates and slight traces of mineral dust. The Hänel parameterization is applied to these case studies, obtaining results within the range of values reported in previous studies, with values of the γ exponent of 0.56 ± 0.01 (for anthropogenic particles slightly influenced by mineral dust) and 1.07 ± 0.01 (for the situation dominated by anthropogenic particles), showing the convenience of this remote sensing approach for the study of hygroscopic effects of the atmospheric aerosol under ambient unperturbed conditions. For the first time, the retrieval of the volume concentration profiles for these cases using the Lidar Radiometer Inversion Code (LIRIC) allows us to analyze the aerosol hygroscopic growth effects on aerosol volume concentration, observing a stronger increase of the fine mode volume concentration with increasing relative humidity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution, ground-based and independent observations including co-located wind radiometer, lidar stations, and infrasound instruments are used to evaluate the accuracy of general circulation models and data-constrained assimilation systems in the middle atmosphere at northern hemisphere midlatitudes. Systematic comparisons between observations, the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses including the recent Integrated Forecast System cycles 38r1 and 38r2, the NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalyses, and the free-running climate Max Planck Institute–Earth System Model–Low Resolution (MPI-ESM-LR) are carried out in both temporal and spectral dom ains. We find that ECMWF and MERRA are broadly consistent with lidar and wind radiometer measurements up to ~40 km. For both temperature and horizontal wind components, deviations increase with altitude as the assimilated observations become sparser. Between 40 and 60 km altitude, the standard deviation of the mean difference exceeds 5 K for the temperature and 20 m/s for the zonal wind. The largest deviations are observed in winter when the variability from large-scale planetary waves dominates. Between lidar data and MPI-ESM-LR, there is an overall agreement in spectral amplitude down to 15–20 days. At shorter time scales, the variability is lacking in the model by ~10 dB. Infrasound observations indicate a general good agreement with ECWMF wind and temperature products. As such, this study demonstrates the potential of the infrastructure of the Atmospheric Dynamics Research Infrastructure in Europe project that integrates various measurements and provides a quantitative understanding of stratosphere-troposphere dynamical coupling for numerical weather prediction applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE This study presents the first in vivo real-time optical tissue characterization during image-guided percutaneous intervention using near-infrared diffuse optical spectroscopy sensing at the tip of a needle. The goal of this study was to indicate transition boundaries from healthy tissue to tumors, namely, hepatic carcinoma, based on the real-time feedback derived from the optical measurements. MATERIALS AND METHODS Five woodchucks with hepatic carcinoma were used for this study. The woodchucks were imaged with contrast-enhanced cone beam computed tomography with a flat panel detector C-arm system to visualize the carcinoma in the liver. In each animal, 3 insertions were performed, starting from the skin surface toward the hepatic carcinoma under image guidance. In 2 woodchucks, each end point of the insertion was confirmed with pathologic examination of a biopsy sample. While advancing the needle in the animals under image guidance such as fluoroscopy overlaid with cone beam computed tomography slice and ultrasound, optical spectra were acquired at the distal end of the needles. Optical tissue characterization was determined by translating the acquired optical spectra into clinical parameters such as blood, water, lipid, and bile fractions; tissue oxygenation levels; and scattering amplitude related to tissue density. The Kruskal-Wallis test was used to study the difference in the derived clinical parameters from the measurements performed within the healthy tissue and the hepatic carcinoma. Kurtoses were calculated to assess the dispersion of these parameters within the healthy and carcinoma tissues. RESULTS Blood and lipid volume fractions as well as tissue oxygenation and reduced scattering amplitude showed to be significantly different between the healthy part of the liver and the hepatic carcinoma (P < 0.05) being higher in normal liver tissue. A decrease in blood and lipid volume fractions and tissue oxygenation as well as an increase in scattering amplitude were observed when the tip of the needle crossed the margin from the healthy liver tissue to the carcinoma. The kurtosis for each derived clinical parameter was high in the hepatic tumor as compared with that in the healthy liver indicating intracarcinoma variability. CONCLUSIONS Tissue blood content, oxygenation level, lipid content, and tissue density all showed significant differences when the needle tip was guided from the healthy tissue to the carcinoma and can therefore be used to identify tissue boundaries during percutaneous image-guided interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serial quantification of BCR-ABL1 mRNA is an important therapeutic indicator in chronic myeloid leukaemia, but there is a substantial variation in results reported by different laboratories. To improve comparability, an internationally accepted plasmid certified reference material (CRM) was developed according to ISO Guide 34:2009. Fragments of BCR-ABL1 (e14a2 mRNA fusion), BCR and GUSB transcripts were amplified and cloned into pUC18 to yield plasmid pIRMM0099. Six different linearised plasmid solutions were produced with the following copy number concentrations, assigned by digital PCR, and expanded uncertainties: 1.08±0.13 × 10(6), 1.08±0.11 × 10(5), 1.03±0.10 × 10(4), 1.02±0.09 × 10(3), 1.04±0.10 × 10(2) and 10.0±1.5 copies/μl. The certification of the material for the number of specific DNA fragments per plasmid, copy number concentration of the plasmid solutions and the assessment of inter-unit heterogeneity and stability were performed according to ISO Guide 35:2006. Two suitability studies performed by 63 BCR-ABL1 testing laboratories demonstrated that this set of 6 plasmid CRMs can help to standardise a number of measured transcripts of e14a2 BCR-ABL1 and three control genes (ABL1, BCR and GUSB). The set of six plasmid CRMs is distributed worldwide by the Institute for Reference Materials and Measurements (Belgium) and its authorised distributors (https://ec.europa.eu/jrc/en/reference-materials/catalogue/; CRM code ERM-AD623a-f).