Comparison of co-located independent ground-based middle atmospheric wind and temperature measurements with numerical weather prediction models


Autoria(s): Le Pichon, A.; Assink, J. D.; Heinrich, P.; Blanc, E.; Charlton-Perez, A.; Lee, C. F.; Keckhut, P.; Hauchecorne, A.; Rüfenacht, Rolf; Kämpfer, Niklaus; Drob, D. P.; Smets, P. S. M.; Evers, L. G.; Ceranna, L.; Pilger, C.; Ross, O.; Claud, C.
Data(s)

2015

Resumo

High-resolution, ground-based and independent observations including co-located wind radiometer, lidar stations, and infrasound instruments are used to evaluate the accuracy of general circulation models and data-constrained assimilation systems in the middle atmosphere at northern hemisphere midlatitudes. Systematic comparisons between observations, the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses including the recent Integrated Forecast System cycles 38r1 and 38r2, the NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalyses, and the free-running climate Max Planck Institute–Earth System Model–Low Resolution (MPI-ESM-LR) are carried out in both temporal and spectral dom ains. We find that ECMWF and MERRA are broadly consistent with lidar and wind radiometer measurements up to ~40 km. For both temperature and horizontal wind components, deviations increase with altitude as the assimilated observations become sparser. Between 40 and 60 km altitude, the standard deviation of the mean difference exceeds 5 K for the temperature and 20 m/s for the zonal wind. The largest deviations are observed in winter when the variability from large-scale planetary waves dominates. Between lidar data and MPI-ESM-LR, there is an overall agreement in spectral amplitude down to 15–20 days. At shorter time scales, the variability is lacking in the model by ~10 dB. Infrasound observations indicate a general good agreement with ECWMF wind and temperature products. As such, this study demonstrates the potential of the infrastructure of the Atmospheric Dynamics Research Infrastructure in Europe project that integrates various measurements and provides a quantitative understanding of stratosphere-troposphere dynamical coupling for numerical weather prediction applications.

Formato

application/pdf

Identificador

http://boris.unibe.ch/75003/1/jgrd52358.pdf

Le Pichon, A.; Assink, J. D.; Heinrich, P.; Blanc, E.; Charlton-Perez, A.; Lee, C. F.; Keckhut, P.; Hauchecorne, A.; Rüfenacht, Rolf; Kämpfer, Niklaus; Drob, D. P.; Smets, P. S. M.; Evers, L. G.; Ceranna, L.; Pilger, C.; Ross, O.; Claud, C. (2015). Comparison of co-located independent ground-based middle atmospheric wind and temperature measurements with numerical weather prediction models. Journal of Geophysical Research: Atmospheres, 120(16), pp. 8318-8331. American Geophysical Union 10.1002/2015JD023273 <http://dx.doi.org/10.1002/2015JD023273>

doi:10.7892/boris.75003

info:doi:10.1002/2015JD023273

urn:issn:2169-897X

Idioma(s)

eng

Publicador

American Geophysical Union

Relação

http://boris.unibe.ch/75003/

Direitos

info:eu-repo/semantics/openAccess

Fonte

Le Pichon, A.; Assink, J. D.; Heinrich, P.; Blanc, E.; Charlton-Perez, A.; Lee, C. F.; Keckhut, P.; Hauchecorne, A.; Rüfenacht, Rolf; Kämpfer, Niklaus; Drob, D. P.; Smets, P. S. M.; Evers, L. G.; Ceranna, L.; Pilger, C.; Ross, O.; Claud, C. (2015). Comparison of co-located independent ground-based middle atmospheric wind and temperature measurements with numerical weather prediction models. Journal of Geophysical Research: Atmospheres, 120(16), pp. 8318-8331. American Geophysical Union 10.1002/2015JD023273 <http://dx.doi.org/10.1002/2015JD023273>

Palavras-Chave #500 Science #530 Physics #620 Engineering
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed