933 resultados para THIRD GENERATION SYSTEMS
Resumo:
This Thesis aims at building and discussing mathematical models applications focused on Energy problems, both on the thermal and electrical side. The objective is to show how mathematical programming techniques developed within Operational Research can give useful answers in the Energy Sector, how they can provide tools to support decision making processes of Companies operating in the Energy production and distribution and how they can be successfully used to make simulations and sensitivity analyses to better understand the state of the art and convenience of a particular technology by comparing it with the available alternatives. The first part discusses the fundamental mathematical background followed by a comprehensive literature review about mathematical modelling in the Energy Sector. The second part presents mathematical models for the District Heating strategic network design and incremental network design. The objective is the selection of an optimal set of new users to be connected to an existing thermal network, maximizing revenues, minimizing infrastructure and operational costs and taking into account the main technical requirements of the real world application. Results on real and randomly generated benchmark networks are discussed with particular attention to instances characterized by big networks dimensions. The third part is devoted to the development of linear programming models for optimal battery operation in off-grid solar power schemes, with consideration of battery degradation. The key contribution of this work is the inclusion of battery degradation costs in the optimisation models. As available data on relating degradation costs to the nature of charge/discharge cycles are limited, we concentrate on investigating the sensitivity of operational patterns to the degradation cost structure. The objective is to investigate the combination of battery costs and performance at which such systems become economic. We also investigate how the system design should change when battery degradation is taken into account.
Resumo:
In chapter 1 and 2 calcium hydroxide as impregnation agent before steam explosion of sugarcane bagasse and switchgrass, respectively, was compared with auto-hydrolysis, assessing the effects on enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) at high solid concentration of pretreated solid fraction. In addition, anaerobic digestion of pretreated liquid fraction was carried out, in order to appraise the effectiveness of calcium hydroxide before steam explosion in a more comprehensive way. In As water is an expensive input in both cultivation of biomass crops and subsequent pretreatment, Chapter 3 addressed the effects of variable soil moisture on biomass growth and composition of biomass sorghum. Moreover, the effect of water stress was related to the characteristics of stem juice for 1st generation ethanol and structural carbohydrates for 2nd generation ethanol. In the frame of chapter 1, calcium hydroxide was proven to be a suitable catalyst for sugarcane bagasse before steam explosion, in order to enhance fibre deconstruction. In chapter 2, effect of calcium hydroxide on switchgrass showed a great potential when ethanol was focused, whereas acid addition produced higher methane yield. Regarding chapter 3, during crop cycle the amount of cellulose, hemicellulose and AIL changed causing a decrease of 2G ethanol amount. Biomass physical and chemical properties involved a lower glucose yield and concentration at the end of enzymatic hydrolysis and, consequently, a lower 2G ethanol concentration at the end of simultaneous saccharification and fermentation, proving that there is strong relationship between structure, chemical composition, and fermentable sugar yield. The significantly higher concentration of ethanol at the early crop stage could be an important incentive to consider biomass sorghum as second crop in the season, to be introduced into some agricultural systems, potentially benefiting farmers and, above all, avoiding the exacerbation of the debate about fuel vs food crops.
Resumo:
This thesis deals with the investigation of exciton and charge dynamics in hybrid solar cells by time-resolved optical spectroscopy. Quasi-steady-state and transient absorption spectroscopy, as well as time-resolved photoluminescence spectroscopy, were employed to study charge generation and recombination in solid-state organic dye-sensitized solar cells, where the commonly used liquid electrolyte is replaced by an organic solid hole transporter, namely 2,2′7,7′-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene (spiro-MeOTAD), and polymer-metal oxide bulk heterojunction solar cells, where the commonly used fullerene acceptor [6,6]-phenyl C61 butyric acid methyl ester (PCBM) is replaced by zinc oxide (ZnO) nanoparticles. By correlating the spectroscopic results with the photovoltaic performance, efficiency-limiting processes and processes leading to photocurrent generation in the investigated systems are revealed. rnIt is shown that the charge generation from several all-organic donor-π-bridge-acceptor dyes, specifically perylene monoimide derivatives, employed in solid-state dye-sensitized solar cells, is strongly dependent on the presence of a commonly used additive lithium bis(trifluoromethanesulphonyl)imide salt (Li-TFSI) at the interface. rnMoreover, it is shown that charges can not only be generated by electron injection from the excited dye into the TiO2 acceptor and subsequent regeneration of the dye cation by the hole transporter, but also by an alternative mechanism, called preceding hole transfer (or reductive quenching). Here, the excited dye is first reduced by the hole transporter and the thereby formed anion subsequently injects an electron into the titania. This additional charge generation process, which is only possible for solid hole transporters, helps to overcome injection problems. rnHowever, a severe disadvantage of solid-state dye-sensitized solar cells is re-vealed by monitoring the transient Stark effect on dye molecules at the inter-face induced by the electric field between electrons and holes. The attraction between the negative image charge present in TiO2, which is induced by the positive charge carrier in the hole transporter due to the dielectric contrast between the organic spiro-MeOTAD and inorganic titania, is sufficient to at-tract the hole back to the interface, thereby increasing recombination and suppressing the extraction of free charges.rnBy investigating the effect of different dye structures and physical properties on charge generation and recombination, design rules and guidelines for the further advancement of solid-state dye-sensitized solar cells are proposed.rnFinally, a spectroscopic study on polymer:ZnO bulk heterojunction hybrid solar cells, employing different surfactants attached to the metal oxide nanoparticles, was performed to understand the effect of surfactants upon photovoltaic behavior. By applying a parallel pool analysis on the transient absorption data, it is shown that suppressing fast recombination while simultaneously maintaining the exciton splitting efficiency by the right choice of surfactants leads to better photovoltaic performances. Suppressing the fast recombination completely, whilst maintaining the exciton splitting, could lead to a doubling of the power conversion efficiency of this type of solar cell.
Resumo:
Un sistema mobile di comunicazione è un sistema di telecomunicazioni in cui è possibile mantenere la connessione o legame tra due o più utenti, anche nelle situazioni di mobilità totale o parziale degli stessi utenti. I sistemi radiomobili si stanno evolvendo dalla creazione del 1G (prima generazione) al 4G (quarta generazione). I telefoni di ogni generazione si differenziano in quattro aspetti principali : accesso radio, velocità di trasmissione dati, larghezza di banda e sistemi di commutazione. In questa tesi si affronta il tema dei sistemi 5G , negli ambienti terrestri e satellitari , in quanto sono l'ultima evoluzione dei sistemi mobili . Si introduce il passaggio dalla prima alla connessione di quarta generazione , al fine di capire perché 5G sta per cambiare la nostra vita . Quello che mi colpisce è il sito italiano www.Repubblica.it che dice : " con la nuova generazione 5 possiamo affidare le intere porzioni nette di vita". La tecnologia cellulare , infatti , ha cambiato radicalmente la nostra società e il nostro modo di comunicare . In primo luogo è cambiata la telefonia vocale , per poi trasferirsi all' accesso dati , applicazioni e servizi. Tuttavia , Internet non è stato ancora pienamente sfruttato dai sistemi cellulari. Con l'avvento del 5G avremo l'opportunità di scavalcare le capacità attuali di Internet . Il sistema di comunicazione di quinta generazione è visto come la rete wireless reale , in grado di supportare applicazioni web wireless a livello mondiale ( wwww ). Ci sono due punti di vista dei sistemi 5G : evolutivo e rivoluzionario. Dal punto di vista evolutivo, i sistemi 5G saranno in grado di supportare wwww permettendo una rete altamente flessibile come un Adhoc rete wireless dinamica ( DAWN ) . In questa visione tecnologie avanzate, tra cui antenna intelligente e modulazione flessibile , sono le chiavi per ottimizzare le reti wireless ad hoc. Dal punto di vista rivoluzionario, i sistemi 5G dovrebbe essere una tecnologia intelligente in grado di interconnettere tutto il mondo senza limiti . Un esempio di applicazione potrebbe essere un robot wireless con intelligenza artificiale .
Resumo:
Acute myeloid leukaemia (AML) is a cancer of the haematopoietic system, which can in many cases only be cured by haematopoietic stem cell transplantation (HSCT) and donor lymphocyte infusion (DLI) (Burnett et al., 2011). This therapy is associated with the beneficial graft-versus-leukaemia (GvL) effect mediated by transplanted donor T and NK cells that either recognise mismatch HLA molecules or polymorphic peptides, so-called minor histocompatibility antigens, leukaemia-associated or leukaemia-specific antigens in the patient and thus eliminate remaining leukaemic blasts. Nevertheless, the mature donor-derived cells often trigger graft-versus-host disease (GvHD), leading to severe damages in patients’ epithelial tissue, mainly skin, liver and intestine (Bleakley & Riddell, 2004). Therefore, approaches for the selective mediation of strong GvL effects are needed, also in order to prevent relapse after transplantation. One promising opportunity is the in vitro generation of AML-reactive CD4+ T cells for adoptive transfer. CD4+ T cells are advantageous compared to CD8+ T cells, as HLA class II molecules are under non-inflammatory conditions only expressed on haematopoietic cells; a fact that would minimise GvHD (Klein & Sato, 2000). In this study, naive CD4+ T cells were isolated from healthy donors and were successfully stimulated against primary AML blasts in mini-mixed lymphocyte/leukaemia cell cultures (mini-MLLC) in eight patient/donor pairs. After three to seven weekly restimulations, T cells were shown to produce TH1 type cytokines and to be partially of monoclonal origin according to their TCR Vβ chain usage. Furthermore, they exhibited lytic activity towards AML blasts, which was mediated by the release of granzymes A and B and perforin. The patient/donor pairs used in this study were fully HLA-class I matched, except for one pair, and also matched for HLA-DR and -DQ, whereas -DP was mismatched in one or both alleles, reflecting the actual donor selection procedure in the clinic (Begovich et al., 1992). Antibody blocking experiments suggested that the generated CD4+ T cells were directed against the HLA-DP mismatches, which could be confirmed by the recognition of donor-derived lymphoblastoid cell lines (LCLs) electroporated with the mismatched DP alleles. Under non-inflammatory conditions primary fibroblasts did not express HLA-DP and were thus not recognised, supporting the idea of a safer application of CD4+ T cells regarding induction of GvHD. For the assessment of the biological significance of these T cells, they were adoptively transferred into NSG mice engrafted with human AML blasts, where they migrated to the bone marrow and lymphoid tissue and succeeded in eliminating the leukaemic burden after only one week. Therefore, AML-reactive CD4+ T cells expanded from the naive compartment by in vitro stimulation with primary leukaemia blasts appear to be a potent tool for DLI in HSCT patients and promise to mediate specific GvL effects without causing GvHD.
Resumo:
Im Bereich sicherheitsrelevanter eingebetteter Systeme stellt sich der Designprozess von Anwendungen als sehr komplex dar. Entsprechend einer gegebenen Hardwarearchitektur lassen sich Steuergeräte aufrüsten, um alle bestehenden Prozesse und Signale pünktlich auszuführen. Die zeitlichen Anforderungen sind strikt und müssen in jeder periodischen Wiederkehr der Prozesse erfüllt sein, da die Sicherstellung der parallelen Ausführung von größter Bedeutung ist. Existierende Ansätze können schnell Designalternativen berechnen, aber sie gewährleisten nicht, dass die Kosten für die nötigen Hardwareänderungen minimal sind. Wir stellen einen Ansatz vor, der kostenminimale Lösungen für das Problem berechnet, die alle zeitlichen Bedingungen erfüllen. Unser Algorithmus verwendet Lineare Programmierung mit Spaltengenerierung, eingebettet in eine Baumstruktur, um untere und obere Schranken während des Optimierungsprozesses bereitzustellen. Die komplexen Randbedingungen zur Gewährleistung der periodischen Ausführung verlagern sich durch eine Zerlegung des Hauptproblems in unabhängige Unterprobleme, die als ganzzahlige lineare Programme formuliert sind. Sowohl die Analysen zur Prozessausführung als auch die Methoden zur Signalübertragung werden untersucht und linearisierte Darstellungen angegeben. Des Weiteren präsentieren wir eine neue Formulierung für die Ausführung mit fixierten Prioritäten, die zusätzlich Prozessantwortzeiten im schlimmsten anzunehmenden Fall berechnet, welche für Szenarien nötig sind, in denen zeitliche Bedingungen an Teilmengen von Prozessen und Signalen gegeben sind. Wir weisen die Anwendbarkeit unserer Methoden durch die Analyse von Instanzen nach, welche Prozessstrukturen aus realen Anwendungen enthalten. Unsere Ergebnisse zeigen, dass untere Schranken schnell berechnet werden können, um die Optimalität von heuristischen Lösungen zu beweisen. Wenn wir optimale Lösungen mit Antwortzeiten liefern, stellt sich unsere neue Formulierung in der Laufzeitanalyse vorteilhaft gegenüber anderen Ansätzen dar. Die besten Resultate werden mit einem hybriden Ansatz erzielt, der heuristische Startlösungen, eine Vorverarbeitung und eine heuristische mit einer kurzen nachfolgenden exakten Berechnungsphase verbindet.
Resumo:
In dieser Arbeit werden die Dynamiken angeregter Zustände in Donor-Akzeptorsystemen für Energieumwandlungsprozesse mit ultraschneller zeitaufgelöster optischer Spektroskopie behandelt. Der Hauptteil dieser Arbeit legt den Fokus auf die Erforschung der Photophysik organischer Solarzellen, deren aktive Schichten aus diketopyrrolopyrrole (DPP) basierten Polymeren mit kleiner Bandlücke als Elektronendonatoren und Fullerenen als Elektronenakzeptoren bestehen. rnEin zweiter Teil widmet sich der Erforschung von künstlichen primären Photosynthesereaktionszentren, basierend auf Porphyrinen, Quinonen und Ferrocenen, die jeweils als Lichtsammeleinheit, Elektronenakzeptor beziehungsweise als Elektronendonatoren eingesetzt werden, um langlebige ladungsgetrennte Zustände zu erzeugen.rnrnZeitaufgelöste Photolumineszenzspektroskopie und transiente Absorptionsspektroskopie haben gezeigt, dass Singulettexzitonenlebenszeiten in den Polymeren PTDPP-TT und PFDPP-TT Polymeren kurz sind (< 20 ps) und dass in Mischungen der Polymere mit PC71BM geminale Rekombination von gebundenen Ladungstransferzuständen ein Hauptverlustkanal ist. Zudem wurde in beiden Systemen schnelle nichtgeminale Rekombination freier Ladungen zu Triplettzuständen auf dem Polymer beobachtet. Für das Donor-Akzeptor System PDPP5T:PC71BM wurde nachgewiesen, dass die Zugabe eines Lösungsmittels mit hohem Siedepunkt, und zwar ortho-Dichlorbenzol, die Morphologie der aktiven Schicht stark beeinflusst und die Solarzelleneffizienz verbessert. Der Grund hierfür ist, dass die Donator- und Akzeptormaterialien besser durchmischt sind und sich Perkolationswege zu den Elektroden ausgebildet haben, was zu einer verbesserten Ladungsträgergeneration und Extraktion führt. Schnelle Bildung des Triplettzustands wurde in beiden PDPP5T:PC71BM Systemen beobachtet, da der Triplettzustand des Polymers über Laungstransferzustände mit Triplettcharakter populiert werden kann. "Multivariate curve resolution" (MCR) Analyse hat eine starke Intensitätsabhängigkeit gezeigt, was auf nichtgeminale Ladungsträgerrekombination in den Triplettzustand hinweist.rnrnIn den künstlichen primären Photosynthesereaktionszentren hat transiente Absorptionsspektroskopie bestätigt, dass photoinduzierter Ladungstransfer in Quinon-Porphyrin (Q-P) und Porphyrin-Ferrocen (P-Fc) Diaden sowie in Quinon-Porphyrin-Ferrocen (Q-P-Fc) Triaden effizient ist. Es wurde jedoch auch gezeigt, dass in den P-Fc unf Q-P-Fc Systemen die ladungsgetrennten Zustände in den Triplettzustand der jeweiligen Porphyrine rekombinieren. Der ladungsgetrennte Zustand konnte in der Q-P Diade durch Zugabe einer Lewissäure signifikant stabilisiert werden.
Resumo:
Our generation of computational scientists is living in an exciting time: not only do we get to pioneer important algorithms and computations, we also get to set standards on how computational research should be conducted and published. From Euclid’s reasoning and Galileo’s experiments, it took hundreds of years for the theoretical and experimental branches of science to develop standards for publication and peer review. Computational science, rightly regarded as the third branch, can walk the same road much faster. The success and credibility of science are anchored in the willingness of scientists to expose their ideas and results to independent testing and replication by other scientists. This requires the complete and open exchange of data, procedures and materials. The idea of a “replication by other scientists” in reference to computations is more commonly known as “reproducible research”. In this context the journal “EAI Endorsed Transactions on Performance & Modeling, Simulation, Experimentation and Complex Systems” had the exciting and original idea to make the scientist able to submit simultaneously the article and the computation materials (software, data, etc..) which has been used to produce the contents of the article. The goal of this procedure is to allow the scientific community to verify the content of the paper, reproducing it in the platform independently from the OS chosen, confirm or invalidate it and especially allow its reuse to reproduce new results. This procedure is therefore not helpful if there is no minimum methodological support. In fact, the raw data sets and the software are difficult to exploit without the logic that guided their use or their production. This led us to think that in addition to the data sets and the software, an additional element must be provided: the workflow that relies all of them.
Resumo:
Several studies have reported certain bone morphogenic proteins (BMPs) to have positive effects on bone generation. Although some investigators have studied the effects of human recombinant BMP (rhBMP-2) in sinus augmentation in sheep, none of these studies looked at the placement of implants at the time of sinus augmentation. Furthermore, no literature could be found to report on the impact that different implant systems, as well as the positioning of the implants had on bone formation if rhBMP-2 was utilized in sinus-lift procedures.
Resumo:
The intensive use of nano-sized titanium dioxide (TiO2) particles in many different applications necessitates studies on their risk assessment as there are still open questions on their safe handling and utilization. For reliable risk assessment, the interaction of TiO2 nanoparticles (NP) with biological systems ideally needs to be investigated using physico-chemically uniform and well-characterized NP. In this article, we describe the reproducible production of TiO2 NP aerosols using spark ignition technology. Because currently no data are available on inhaled NP in the 10–50 nm diameter range, the emphasis was to generate NP as small as 20 nm for inhalation studies in rodents. For anticipated in vivo dosimetry analyses, TiO2 NP were radiolabeled with 48V by proton irradiation of the titanium electrodes of the spark generator. The dissolution rate of the 48V label was about 1% within the first day. The highly concentrated, polydisperse TiO2 NP aerosol (3–6 × 106 cm−3) proved to be constant over several hours in terms of its count median mobility diameter, its geometric standard deviation, and number concentration. Extensive characterization of NP chemical composition, physical structure, morphology, and specific surface area was performed. The originally generated amorphous TiO2 NP were converted into crystalline anatase TiO2 NP by thermal annealing at 950 °C. Both crystalline and amorphous 20-nm TiO2 NP were chain agglomerated/aggregated, consisting of primary particles in the range of 5 nm. Disintegration of the deposited TiO2 NP in lung tissue was not detectable within 24 h.
Resumo:
We describe a recent offering of a linear systems and signal processing course for third-year electrical and computer engineering students. This course is a pre-requisite for our first digital signal processing course. Students have traditionally viewed linear systems courses as mathematical and extremely difficult. Without compromising the rigor of the required concepts, we strived to make the course fun, with application-based hands-on laboratory projects. These projects can be modified easily to meet specific instructors' preferences. © 2011 IEEE.(17 refs)
Resumo:
With the advent of high through-put sequencing (HTS), the emerging science of metagenomics is transforming our understanding of the relationships of microbial communities with their environments. While metagenomics aims to catalogue the genes present in a sample through assessing which genes are actively expressed, metatranscriptomics can provide a mechanistic understanding of community inter-relationships. To achieve these goals, several challenges need to be addressed from sample preparation to sequence processing, statistical analysis and functional annotation. Here we use an inbred non-obese diabetic (NOD) mouse model in which germ-free animals were colonized with a defined mixture of eight commensal bacteria, to explore methods of RNA extraction and to develop a pipeline for the generation and analysis of metatranscriptomic data. Applying the Illumina HTS platform, we sequenced 12 NOD cecal samples prepared using multiple RNA-extraction protocols. The absence of a complete set of reference genomes necessitated a peptide-based search strategy. Up to 16% of sequence reads could be matched to a known bacterial gene. Phylogenetic analysis of the mapped ORFs revealed a distribution consistent with ribosomal RNA, the majority from Bacteroides or Clostridium species. To place these HTS data within a systems context, we mapped the relative abundance of corresponding Escherichia coli homologs onto metabolic and protein-protein interaction networks. These maps identified bacterial processes with components that were well-represented in the datasets. In summary this study highlights the potential of exploiting the economy of HTS platforms for metatranscriptomics.
Resumo:
In the current study perfusions of an isolated cotyledon of term placenta using standard medium were compared to medium containing xanthine plus xanthine oxidase (X+XO), which generates reactive oxygen species (ROS). A time-dependant increase in the levels of different cytokines (TNF-alpha, IL-1ss, IL-6, IL-8 and IL-10) was observed between 1 and 7h with more than 90% of the total recovered from the maternal compartment with no significant difference between the 2 groups. For 8-iso-PGF2alpha 90% of the total was found in the fetal compartment and a significantly higher total release was seen in the X+XO group. Microparticles (MPs) isolated from the maternal circuit were identified by flow cytometry as trophoblastic sheddings, whereas MPs from the fetal circuit were predominantly derived from endothelial cells. More than 90% of the total of MPs was found in the maternal circuit. The absolute amount of the total as well as the maternal fraction were significantly higher in the X+XO group. Immunohistochemistry (IHC) of the perfused tissue revealed staining for IL-1beta of villous stroma cells, which became clearly more pronounced in experiments with X+XO. Western blot of tissue homogenate revealed 2 isoforms of IL-1beta at 17 and 31kD. In X+XO experiments there was a tendency for increased expression of antioxidant enzymes in the tissue. Western blot of MPs from the maternal circuit showed increased expression of antioxidant enzymes in the X+XO group and for IL-1beta only the 17kD band was detected. In vitro reperfusion of human placental tissue results in mild tissue injury suggestive of oxidative stress. In view of the increased generation of ROS in perfused tissue with further increase under the influence of X+XO, the overall manifestation of oxidative stress remained rather mild. Preservation of antioxidant capacity of human placental tissue could be a sign of integrity of structure and function being maintained in vitro by dual perfusion of an isolated cotyledon. The observed changes resemble findings seen in placentae from preeclampsia.
Resumo:
Sustainable management of solid waste is a global concern, as exemplified by the United Nations Millennium Development Goals (MDG) that 191 member states support. The seventh MDG indirectly advocates for municipal solid waste management (MSWM) by aiming to ensure environmental sustainability into countries’ policies and programs and reverse negative environmental impact. Proper MSWM will likely result in relieving poverty, reducing child mortality, improving maternal health, and preventing disease, which are MDG goals one, four, five, and six, respectively (UNMDG, 2005). Solid waste production is increasing worldwide as the global society strives to obtain a decent quality of life. Several means exist in which the amount of solid waste going to a landfill can be reduced, such as incineration with energy production, composting of organic wastes, and material recovery through recycling, which are all considered sustainable methods by which to manage MSW. In the developing world, composting is already a widely-accepted method to reduce waste fated for the landfill, and incineration for energy recovery can be a costly capital investment for most communities. Therefore, this research focuses on recycling as a solution to the municipal solid waste production problem while considering the three dimensions of sustainability environment, society, and economy. First, twenty-three developing country case studies were quantitatively and qualitatively examined for aspects of municipal solid waste management. The municipal solid waste (MSW) generation and recovery rates, as well as the composition were compiled and assessed. The average MSW generation rate was 0.77 kg/person/day, with recovery rates varying from 5 – 40%. The waste streams of nineteen of these case studies consisted of 0 – 70% recyclable material and 17 – 80% organic material. All twenty-three case studies were analyzed qualitatively by identifying any barriers or incentives to recycling, which justified the creation of twelve factors influencing sustainable municipal solid waste management (MSWM) in developing countries. The presence of regulations, enforcement of laws, and use of incentive schemes constitutes the first factor, Government Policy. Cost of MSWM operations, the budget allocated to MSWM by local to national governments, as well as the stability and reliability of funds comprise the Government Finances factor influencing recycling in the third world. Many case studies indicated that understanding features of a waste stream such as the generation and recovery rates and composition is the first measure in determining proper management solutions, which forms the third factor Waste Characterization. The presence and efficiency of waste collection and segregation by scavengers, municipalities, or private contractors was commonly addressed by the case studies, which justified Waste Collection and Segregation as the fourth factor. Having knowledge of MSWM and an understanding of the linkages between human behavior, waste handling, and health/sanitation/environment comprise the Household Education factor. Individuals’ income influencing waste handling behavior (e.g., reuse, recycling, and illegal dumping), presence of waste collection/disposal fees, and willingness to pay by residents were seen as one of the biggest incentives to recycling, which justified them being combined into the Household Economics factor. The MSWM Administration factor was formed following several references to the presence and effectiveness of private and/or public management of waste through collection, recovery, and disposal influencing recycling activity. Although the MSWM Personnel Education factor was only recognized by six of the twenty-two case studies, the lack of trained laborers and skilled professionals in MSWM positions was a barrier to sustainable MSWM in every case but one. The presence and effectiveness of a comprehensive, integrative, long-term MSWM strategy was highly encouraged by every case study that addressed the tenth factor, MSWM Plan. Although seemingly a subset of private MSWM administration, the existence and profitability of market systems relying on recycled-material throughput, involvement of small businesses, middlemen, and large industries/exporters is deserving of the factor Local Recycled-Material Market. Availability and effective use of technology and/or human workforce and the safety considerations of each were recurrent barriers and incentives to recycling to warrant the Technological and Human Resources factor. The Land Availability factor takes into consideration land attributes such as terrain, ownership, and development which can often times dictate MSWM. Understanding the relationships among the twelve factors influencing recycling in developing countries, made apparent the collaborative nature required of sustainable MSWM. Factors requiring the greatest collaborative inputs include waste collection and segregation, MSWM plan, and local recycled-material market. Aligning each factor to the societal, environmental, and economic dimensions of sustainability revealed the motives behind the institutions contributing to each factor. A correlation between stakeholder involvement and sustainability existed, as supported by the fact that the only three factors driven by all three dimensions of sustainability were the same three that required the greatest collaboration with other factors. With increasing urbanization, advocating for improved health for all through the MDG, and changing consumption patterns resulting in increasing and more complex waste streams, the utilization of the collaboration web offered by this research is ever needed in the developing world. Through its use, the institutions associated with each of the twelve factors can achieve a better understanding of the collaboration necessary and beneficial for more sustainable MSWM.
Resumo:
Autonomous system applications are typically limited by the power supply operational lifetime when battery replacement is difficult or costly. A trade-off between battery size and battery life is usually calculated to determine the device capability and lifespan. As a result, energy harvesting research has gained importance as society searches for alternative energy sources for power generation. For instance, energy harvesting has been a proven alternative for powering solar-based calculators and self-winding wristwatches. Thus, the use of energy harvesting technology can make it possible to assist or replace batteries for portable, wearable, or surgically-implantable autonomous systems. Applications such as cardiac pacemakers or electrical stimulation applications can benefit from this approach since the number of surgeries for battery replacement can be reduced or eliminated. Research on energy scavenging from body motion has been investigated to evaluate the feasibility of powering wearable or implantable systems. Energy from walking has been previously extracted using generators placed on shoes, backpacks, and knee braces while producing power levels ranging from milliwatts to watts. The research presented in this paper examines the available power from walking and running at several body locations. The ankle, knee, hip, chest, wrist, elbow, upper arm, side of the head, and back of the head were the chosen target localizations. Joints were preferred since they experience the most drastic acceleration changes. For this, a motor-driven treadmill test was performed on 11 healthy individuals at several walking (1-4 mph) and running (2-5 mph) speeds. The treadmill test provided the acceleration magnitudes from the listed body locations. Power can be estimated from the treadmill evaluation since it is proportional to the acceleration and frequency of occurrence. Available power output from walking was determined to be greater than 1mW/cm³ for most body locations while being over 10mW/cm³ at the foot and ankle locations. Available power from running was found to be almost 10 times higher than that from walking. Most energy harvester topologies use linear generator approaches that are well suited to fixed-frequency vibrations with sub-millimeter amplitude oscillations. In contrast, body motion is characterized with a wide frequency spectrum and larger amplitudes. A generator prototype based on self-winding wristwatches is deemed to be appropriate for harvesting body motion since it is not limited to operate at fixed-frequencies or restricted displacements. Electromagnetic generation is typically favored because of its slightly higher power output per unit volume. Then, a nonharmonic oscillating rotational energy scavenger prototype is proposed to harness body motion. The electromagnetic generator follows the approach from small wind turbine designs that overcome the lack of a gearbox by using a larger number of coil and magnets arrangements. The device presented here is composed of a rotor with multiple-pole permanent magnets having an eccentric weight and a stator composed of stacked planar coils. The rotor oscillations induce a voltage on the planar coil due to the eccentric mass unbalance produced by body motion. A meso-scale prototype device was then built and evaluated for energy generation. The meso-scale casing and rotor were constructed on PMMA with the help of a CNC mill machine. Commercially available discrete magnets were encased in a 25mm rotor. Commercial copper-coated polyimide film was employed to manufacture the planar coils using MEMS fabrication processes. Jewel bearings were used to finalize the arrangement. The prototypes were also tested at the listed body locations. A meso-scale generator with a 2-layer coil was capable to extract up to 234 µW of power at the ankle while walking at 3mph with a 2cm³ prototype for a power density of 117 µW/cm³. This dissertation presents the analysis of available power from walking and running at different speeds and the development of an unobtrusive miniature energy harvesting generator for body motion. Power generation indicates the possibility of powering devices by extracting energy from body motion.