949 resultados para SCHRODINGER-POISSON EQUATIONS
Resumo:
We investigate parallel algorithms for the solution of the Navier–Stokes equations in space-time. For periodic solutions, the discretized problem can be written as a large non-linear system of equations. This system of equations is solved by a Newton iteration. The Newton correction is computed using a preconditioned GMRES solver. The parallel performance of the algorithm is illustrated.
Resumo:
In this paper we develop an adaptive procedure for the numerical solution of general, semilinear elliptic problems with possible singular perturbations. Our approach combines both prediction-type adaptive Newton methods and a linear adaptive finite element discretization (based on a robust a posteriori error analysis), thereby leading to a fully adaptive Newton–Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for various examples
Resumo:
We introduce a multistable subordinator, which generalizes the stable subordinator to the case of time-varying stability index. This enables us to define a multifractional Poisson process. We study properties of these processes and establish the convergence of a continuous-time random walk to the multifractional Poisson process.
Resumo:
A large deviations type approximation to the probability of ruin within a finite time for the compound Poisson risk process perturbed by diffusion is derived. This approximation is based on the saddlepoint method and generalizes the approximation for the non-perturbed risk process by Barndorff-Nielsen and Schmidli (Scand Actuar J 1995(2):169–186, 1995). An importance sampling approximation to this probability of ruin is also provided. Numerical illustrations assess the accuracy of the saddlepoint approximation using importance sampling as a benchmark. The relative deviations between saddlepoint approximation and importance sampling are very small, even for extremely small probabilities of ruin. The saddlepoint approximation is however substantially faster to compute.
Resumo:
The aim of this note is to characterize all pairs of sufficiently smooth functions for which the mean value in the Cauchy mean value theorem is taken at a point which has a well-determined position in the interval. As an application of this result, a partial answer is given to a question posed by Sahoo and Riedel.
Resumo:
The 1937 paper of Gronwall which concerns an alternative form for the Schrodinger Equation of the 2-electron Helium problem is re-derived in a (hopefully) transparent (possibly pedestrian) manner.
Resumo:
Differential equations are equations that involve an unknown function and derivatives. Euler's method are efficient methods to yield fairly accurate approximations of the actual solutions. By manipulating such methods, one can find ways to provide good approximations compared to the exact solution of parabolic partial differential equations and nonlinear parabolic differential equations.
Resumo:
In teaching elementary quantum chemistry, the concept of eigenfunctionality is explored using the H-atom's Hamiltonian and various guessed functions. This is done in Cartesian coordinates, in Spherical Polar coordinates, and in Confocal Elliptical coordinates.
Resumo:
En los últimos años se ha dado un incremento en la preocupación social por los problemas relacionados con la calidad de los servicios, y en particular, de la enseñanza universitaria. El objetivo de este trabajo es presentar una propuesta que sirva de orientación en el aprendizaje de algunas técnicas y metodologías estadísticas adecuadas para el alumno de grado en distintas carreras universitarias. Se pretende lograr una mejor enseñanza de la asignatura Estadística basándose en la resolución de problemas y de casos prácticos con datos reales de diversos aspectos del ámbito de la tecnología y de las ciencias. Para lograr con los objetivos planteados se presenta, a modo de ejemplo, una aplicación al estudio del proceso de Poisson. En particular se realiza un estudio estadístico del tráfico de automóviles particulares que pasan por un punto fijo de la autopista La Plata-Buenos Aires.
Resumo:
En los últimos años se ha dado un incremento en la preocupación social por los problemas relacionados con la calidad de los servicios, y en particular, de la enseñanza universitaria. El objetivo de este trabajo es presentar una propuesta que sirva de orientación en el aprendizaje de algunas técnicas y metodologías estadísticas adecuadas para el alumno de grado en distintas carreras universitarias. Se pretende lograr una mejor enseñanza de la asignatura Estadística basándose en la resolución de problemas y de casos prácticos con datos reales de diversos aspectos del ámbito de la tecnología y de las ciencias. Para lograr con los objetivos planteados se presenta, a modo de ejemplo, una aplicación al estudio del proceso de Poisson. En particular se realiza un estudio estadístico del tráfico de automóviles particulares que pasan por un punto fijo de la autopista La Plata-Buenos Aires.