Functional equations and the Cauchy mean value theorem
Data(s) |
2016
|
---|---|
Resumo |
The aim of this note is to characterize all pairs of sufficiently smooth functions for which the mean value in the Cauchy mean value theorem is taken at a point which has a well-determined position in the interval. As an application of this result, a partial answer is given to a question posed by Sahoo and Riedel. |
Formato |
application/pdf |
Identificador |
http://boris.unibe.ch/81168/1/art%253A10.1007%252Fs00010-015-0395-6.pdf Balogh, Zoltan; Ibrogimov, Orif; Mityagin, Boris S. (2016). Functional equations and the Cauchy mean value theorem. Aequationes mathematicae, 90(4), pp. 683-697. Springer 10.1007/s00010-015-0395-6 <http://dx.doi.org/10.1007/s00010-015-0395-6> doi:10.7892/boris.81168 info:doi:10.1007/s00010-015-0395-6 urn:issn:0001-9054 |
Idioma(s) |
eng |
Publicador |
Springer |
Relação |
http://boris.unibe.ch/81168/ |
Direitos |
info:eu-repo/semantics/openAccess |
Fonte |
Balogh, Zoltan; Ibrogimov, Orif; Mityagin, Boris S. (2016). Functional equations and the Cauchy mean value theorem. Aequationes mathematicae, 90(4), pp. 683-697. Springer 10.1007/s00010-015-0395-6 <http://dx.doi.org/10.1007/s00010-015-0395-6> |
Palavras-Chave | #510 Mathematics |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed |