Fully Adaptive Newton--Galerkin Methods for Semilinear Elliptic Partial Differential Equations


Autoria(s): Amrein, Mario; Wihler, Thomas
Data(s)

2015

Resumo

In this paper we develop an adaptive procedure for the numerical solution of general, semilinear elliptic problems with possible singular perturbations. Our approach combines both prediction-type adaptive Newton methods and a linear adaptive finite element discretization (based on a robust a posteriori error analysis), thereby leading to a fully adaptive Newton–Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for various examples

Formato

application/pdf

Identificador

http://boris.unibe.ch/70116/1/140983537.pdf

Amrein, Mario; Wihler, Thomas (2015). Fully Adaptive Newton--Galerkin Methods for Semilinear Elliptic Partial Differential Equations. SIAM Journal on Scientific Computing, 37(4), A1637-A1657. Society for Industrial and Applied Mathematics 10.1137/140983537 <http://dx.doi.org/10.1137/140983537>

doi:10.7892/boris.70116

info:doi:10.1137/140983537

urn:issn:1064-8275

Idioma(s)

eng

Publicador

Society for Industrial and Applied Mathematics

Relação

http://boris.unibe.ch/70116/

Direitos

info:eu-repo/semantics/restrictedAccess

Fonte

Amrein, Mario; Wihler, Thomas (2015). Fully Adaptive Newton--Galerkin Methods for Semilinear Elliptic Partial Differential Equations. SIAM Journal on Scientific Computing, 37(4), A1637-A1657. Society for Industrial and Applied Mathematics 10.1137/140983537 <http://dx.doi.org/10.1137/140983537>

Palavras-Chave #510 Mathematics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed