Fully Adaptive Newton--Galerkin Methods for Semilinear Elliptic Partial Differential Equations
Data(s) |
2015
|
---|---|
Resumo |
In this paper we develop an adaptive procedure for the numerical solution of general, semilinear elliptic problems with possible singular perturbations. Our approach combines both prediction-type adaptive Newton methods and a linear adaptive finite element discretization (based on a robust a posteriori error analysis), thereby leading to a fully adaptive Newton–Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for various examples |
Formato |
application/pdf |
Identificador |
http://boris.unibe.ch/70116/1/140983537.pdf Amrein, Mario; Wihler, Thomas (2015). Fully Adaptive Newton--Galerkin Methods for Semilinear Elliptic Partial Differential Equations. SIAM Journal on Scientific Computing, 37(4), A1637-A1657. Society for Industrial and Applied Mathematics 10.1137/140983537 <http://dx.doi.org/10.1137/140983537> doi:10.7892/boris.70116 info:doi:10.1137/140983537 urn:issn:1064-8275 |
Idioma(s) |
eng |
Publicador |
Society for Industrial and Applied Mathematics |
Relação |
http://boris.unibe.ch/70116/ |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Fonte |
Amrein, Mario; Wihler, Thomas (2015). Fully Adaptive Newton--Galerkin Methods for Semilinear Elliptic Partial Differential Equations. SIAM Journal on Scientific Computing, 37(4), A1637-A1657. Society for Industrial and Applied Mathematics 10.1137/140983537 <http://dx.doi.org/10.1137/140983537> |
Palavras-Chave | #510 Mathematics |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed |