924 resultados para QUANTUM-DOT SUPERLATTICES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fabrication of semiconductor nanostructures such as quantum dots (QDs), quantum rings (QRs) has been considered as the important step for realization of solid state quantum information devices, including QDs single photon emission source, QRs single electron memory unit, etc. To fabricate GaAs quantum rings, we use Molecular Beam Epitaxy (MBE) droplet technique in this report. In this droplet technique, Gallium (Ga) molecular beams are supplied initially without Arsenic (As) ambience, forming droplet-like nano-clusters of Ga atoms on the substrate, then the Arsenic beams are supplied to crystallize the Ga droplets into GaAs crystals. Because the morphologies and dimensions of the GaAs crystal are governed by the interplay between the surface migration of Ga and As adatoms and their crystallization, the shape of the GaAs crystals can be modified into rings, and the size and density can be controlled by varying the growth temperatures and As/Ga flux beam equivalent pressures(BEPs). It has been shown by Atomic force microscope (AFM) measurements that GaAs single rings, concentric double rings and coupled double rings are grown successfully at typical growth temperatures of 200 C to 300 C under As flux (BEP) of about 1.0 x 10(-6) Torr. The diameter of GaAs rings is about 30-50 nm and thickness several nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate about controlling of photoluminescence (PL) wavelengths of InAs/GaAs self-assembled quantum dots (QDs) sandwiched with combination strained-buffer layer (CSBL) and combination strained-reducing layer (CSRL). The emission peak position of QDs is red-shifted to 1.37 mu m. The density of the QDs is increased to 1.17x10(10) cm(-2). It is indicated that optical properties of QDs could be improved by optimizing of the buffer and covering layers for the QDs. These results may provide a new way to further developing GaAs-based 1.3 mu m light sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonradiative recombination effect on the photoluminescence (PL) decay dynamics in GaInNAs/GaAs quantum wells is studied by photoluminescence and time-resolved photoluminescence under various excitation intensities and temperatures. It is found that the PL decay dynamics strongly depends on the excitation intensity. In particular, under the moderate excitation levels the PL decay curves exhibit unusual non-exponential behavior and show a convex shape. By introducing a new concept of the effective concentration of nonradiative recombination centers into a rate equation, the observed results are well simulated. In the cw PL measurement, a rapid PL quenching is observed even at very low temperature and is of the excitation power dependence. These results further demonstrate that the non-radiative recombination process plays a very important role on the optical properties of GaInNAs/GaAs quantum wells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is found that both methods using either continuous Sb supply or pre-deposition of a very thin Sb layer are efficient for the Sb-assisted molecular beam epitaxy growth of highly strained InGaAs/GaAs quantum wells (QWs). The emission of QWs is extended to long wavelength close to 1.25 mu m with high luminescence efficiency at room temperature. The influence of rapid thermal annealing (RTA) on the photoluminescence intensity critically depends on the annealing temperature and duration for highly strained QWs. A relatively low RTA temperature of 700 degrees C with a short duration of 10 s is suggested for optimizing the annealing effect. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the single-electron and two-electron vertically-assembled quantum disks in an axial magnetic field using the effective mass approximation. The electron interaction is treated accurately by the direct diagonalization of the Hamiltonian matrix. We calculate the six criergy levels of single-electron quantum disks and the two lowest energy levels of two-electron quantum disks in an axial magnetic field. The change of the magnetic field as an effective potential strongly modifies the electronic structures. leading to splittings and crossings between levels The results demonstrate the switching between the around states with the total spins S = 0 and S = 1. The switching results in a qubit allowed to fabricate by current growth techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using the envelope function method we calculated the tunneling escape time of electrons from a quantum well. We adopted a simplified interface matrix to describe the GAMMA-X mixing effect, and employed a wave packet method to determine the tunneling escape time. When the GAMMA state in the well was in resonance with the X state in the barrier, the escape time reduced remarkably. However, it was possible that the wave functions in two different channels, i.e., GAMMA-GAMMA-GAMMA and GAMMA-X-GAMMA, could interfere destructively, leading the escape time greater than that of pure GAMMA-GAMMA-GAMMA tunneling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the sequential tunneling of doped weakly coupled GaAs/ALAs superlattices (SLs), whose ground state of the X valley in AlAS layers is designed to be located between the ground state (E(GAMMA1)) and the first excited state (E(GAMMA2)) of the GAMMA valley in GaAs wells. The experimental results demonstrate that the high electric field domain in these SLs is attributed to the GAMMA-X sequential tunneling instead of the usual sequential resonant tunneling between subbands in adjacent wells. Within this kind of high field domain, electrons from the ground state in the GaAs well tunnel to the ground state of the X valley in the nearest AlAs layer, then through very rapid real-space transfer relax from the X valley in the AlAs layer to the ground state of the GAMMA valley of the next GaAs well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of heterostructure quality on transport and optical properties of GaAs/AlGaAs single quantum wells with different qualities was studied. In a conventional sample-A, the transport scattering time and the quantum scattering time are small and close to each other. The interface roughness scattering is a dominant scattering mechanism. From comparison between theory and experiment, interface roughness with fluctuation height 2.5 Angstrom and the lateral size of 50-70 Angstrom were estimated. For samples introducing superlattices instead of AlGaAs layers or by utilizing growth interruption, both the transport and PL measurements showed that interfaces were rather smooth in the samples. The two scattering times are much longer. The interface roughness scattering is relegated to an unimportant position. Results demonstrated that it is important to control the formation of heterostructures in order to improve the interface quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have measured the power dependence of the photoluminesence spectra from a set of strained InxGa1-xAs/GaAs single quantum wells. The result shows that the excitation power has important effect on the carrier recombination processes. When the power increases from 0.5 to 14 mW, the photoluminescence from the barrier becomes more intense than that from the well and the trapping efficiency decreases. At high excitation level, the ratio of the radiative recombination rate to the nonradiative recombination rate of the barrier increases ten times than that at lower excitation level, while it only doubles for the well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the Wannier-Stark effect in GaAs/GaAl1-xAs superlattices under electric fields by photocurrent spectroscopy measurements in the range of temperatures 10-300 K. The linewidth of the Oh Stark-ladder exciton was found to increase significantly along with an increase in peak intensity when the electric field increases. We present a mechanism based on an enhanced interface roughness scattering of electronic states due to Wannier-Stark localization in order to explain this increased broadening with electric field. This electric-field-related scattering mechanism will weaken the negative differential conductance effects in superlattices predicted by Esaki and Tsu.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interface modes and LO phonon modes in GaAs/AlAs quantum wells is investigated within the isotropic dispersionless dielectric continuum with nodes in displacement u at the interfaces as boundary condition. The interface modes are found to be purely interface polarization charge effect while LO eigenmodes induce only bulk polarization charges. Analytical expression is determined for LO eigenmodes and is found in good agreement with realistic model calculation, and its labeling index is interpreted as the helicity of electric field as it travels from one side to the other side of the slab.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By extending our microscopic model on optical-phonon modes in quantum wells to one-dimensional (1D) quantum-well wires (QWW), the optical displacements and associated electrostatic potentials of optical-phonon modes in 1D QWW are calculated. The modes can be clearly divided into confined LO bulklike, TO bulklike modes, and extended interfacelike modes provided the bulk phonon dispersion is ignored. The character of each type of mode is illustrated with special attention to the interfacelike modes, which are hybrids of longitudinal- and transverse-optical waves from the corresponding bulk materials. Based on the numerical results, approximate analytical formulas for bulklike modes are presented. As in 2D wells, both the optical displacements and Frohlich potentials for the bulklike modes vanish at the interfaces. The finite dispersion of bulk phonons has a more pronounced effect on the 1D phonon modes because interfacelike modes show mixed characteristics of 2D interface and bulklike modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present studies of alloy composition and layer thickness dependences of excitonic linewidths in InGaAs/GaAs strained-layer quantum wells grown by MBE, using both photoluminescence and optical absorption. It is observed that linewidths of exciton spectra increase with indium content and well size. Using the virtual crystal approximation, the experimental data are analyzed. The results obtained show that the alloy disorder is the dominant mechanism for line broadening at low temperature. In addition, it is found that the absorption spectra related to light hole transitions have varied from a peak to a step-like structure as temperature increases. This behavior can be understood by the indirect space transitions of light holes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An effective-mass formulation for superlattices grown on (11N)-oriented substrates is given. It is found that, for GaAs/AlxGa1-xAs superlattices, the hole subband structure and related properties are sensitive to the orientation because of the large anisotropy of the valence band. The energy-level positions for the heavy hole and the optical transition matrix elements for the light hole apparently change with orientation. The heavy- and light-hole energy levels at k parallel-to = 0 can be calculated separately by taking the classical effective mass in the growth direction. Under a uniaxial stress along the growth direction, the energy levels of the heavy and light holes shift down and up, respectively; at a critical stress, the first heavy- and light-hole energy levels cross over. The energy shifts caused by the uniaxial stress are largest for the (111) case and smallest for the (001) case. The optical transition matrix elements change substantially after the crossover of the first heavy- and light-hole energy has occurred.