919 resultados para QUADRATIC POLYNOMIALS
Resumo:
A new inflationary scenario whose exponential potential V (Phi) has a quadratic dependence on the field Phi in addition to the standard linear term is confronted with the five-year observations of the Wilkinson-Microwave Anisotropy Probe and the Sloan Digital Sky Survey data. The number of e-folds (N), the ratio of tensor-to-scalar perturbations (r), the spectral scalar index of the primordial power spectrum (n(s)) and its running (dn(s)/d ln k) depend on the dimensionless parameter a multiplying the quadratic term in the potential. In the limit a. 0 all the results of the exponential potential are fully recovered. For values of alpha not equal 0, we find that the model predictions are in good agreement with the current observations of the Cosmic Microwave Background (CMB) anisotropies and Large-Scale Structure (LSS) in the Universe. Copyright (C) EPLA, 2008.
Resumo:
In this paper we introduce the concept of the index of an implicit differential equation F(x,y,p) = 0, where F is a smooth function, p = dy/dx, F(p) = 0 and F(pp) = 0 at an isolated singular point. We also apply the results to study the geometry of surfaces in R(5).
Resumo:
In this paper we present results for the systematic study of reversible-equivariant vector fields - namely, in the simultaneous presence of symmetries and reversing symmetries - by employing algebraic techniques from invariant theory for compact Lie groups. The Hilbert-Poincare series and their associated Molien formulae are introduced,and we prove the character formulae for the computation of dimensions of spaces of homogeneous anti-invariant polynomial functions and reversible-equivariant polynomial mappings. A symbolic algorithm is obtained for the computation of generators for the module of reversible-equivariant polynomial mappings over the ring of invariant polynomials. We show that this computation can be obtained directly from a well-known situation, namely from the generators of the ring of invariants and the module of the equivariants. (C) 2008 Elsevier B.V, All rights reserved.
Resumo:
A semiclassical approximation for an evolving density operator, driven by a `closed` Hamiltonian operator and `open` Markovian Lindblad operators, is obtained. The theory is based on the chord function, i.e. the Fourier transform of the Wigner function. It reduces to an exact solution of the Lindblad master equation if the Hamiltonian operator is a quadratic function and the Lindblad operators are linear functions of positions and momenta. Initially, the semiclassical formulae for the case of Hermitian Lindblad operators are reinterpreted in terms of a (real) double phase space, generated by an appropriate classical double Hamiltonian. An extra `open` term is added to the double Hamiltonian by the non-Hermitian part of the Lindblad operators in the general case of dissipative Markovian evolution. The particular case of generic Hamiltonian operators, but linear dissipative Lindblad operators, is studied in more detail. A Liouville-type equivariance still holds for the corresponding classical evolution in double phase space, but the centre subspace, which supports the Wigner function, is compressed, along with expansion of its conjugate subspace, which supports the chord function. Decoherence narrows the relevant region of double phase space to the neighbourhood of a caustic for both the Wigner function and the chord function. This difficulty is avoided by a propagator in a mixed representation, so that a further `small-chord` approximation leads to a simple generalization of the quadratic theory for evolving Wigner functions.
Resumo:
A positive summability trigonometric kernel {K(n)(theta)}(infinity)(n=1) is generated through a sequence of univalent polynomials constructed by Suffridge. We prove that the convolution {K(n) * f} approximates every continuous 2 pi-periodic function f with the rate omega(f, 1/n), where omega(f, delta) denotes the modulus of continuity, and this provides a new proof of the classical Jackson`s theorem. Despite that it turns out that K(n)(theta) coincide with positive cosine polynomials generated by Fejer, our proof differs from others known in the literature.
Resumo:
A method for linearly constrained optimization which modifies and generalizes recent box-constraint optimization algorithms is introduced. The new algorithm is based on a relaxed form of Spectral Projected Gradient iterations. Intercalated with these projected steps, internal iterations restricted to faces of the polytope are performed, which enhance the efficiency of the algorithm. Convergence proofs are given and numerical experiments are included and commented. Software supporting this paper is available through the Tango Project web page: http://www.ime.usp.br/similar to egbirgin/tango/.
Resumo:
Partition of Unity Implicits (PUI) has been recently introduced for surface reconstruction from point clouds. In this work, we propose a PUI method that employs a set of well-observed solutions in order to produce geometrically pleasant results without requiring time consuming or mathematically overloaded computations. One feature of our technique is the use of multivariate orthogonal polynomials in the least-squares approximation, which allows the recursive refinement of the local fittings in terms of the degree of the polynomial. However, since the use of high-order approximations based only on the number of available points is not reliable, we introduce the concept of coverage domain. In addition, the method relies on the use of an algebraically defined triangulation to handle two important tasks in PUI: the spatial decomposition and an adaptive polygonization. As the spatial subdivision is based on tetrahedra, the generated mesh may present poorly-shaped triangles that are improved in this work by means a specific vertex displacement technique. Furthermore, we also address sharp features and raw data treatment. A further contribution is based on the PUI locality property that leads to an intuitive scheme for improving or repairing the surface by means of editing local functions.
Resumo:
The importance of the HSO(2) system in atmospheric and combustion chemistry has motivated several works dedicated to the study of associated structures and chemical reactions. Nevertheless controversy still exists in connection with the reaction SH + O(2) -> H + SO(2) and also related to the role of the HSOO isomers in the potential energy surface (PES). Here we report high-level ab initio calculation for the electronic ground state of the HSO(2) system. Energetic, geometric, and frequency properties for the major stationary states of the PES are reported at the same level of calculations:,CASPT2/aug-cc-pV(T+d)Z. This study introduces three new stationary points (two saddle points and one minimum). These structures allow the connection of the skewed HSOOs and the HSO(2) minima defining new reaction paths for SH + O(2) -> H + SO(2) and SH + O(2) -> OH + SO. In addition, the location of the HSOO isomers in the reaction pathways have been clarified.
Resumo:
The magnetic response of the near-band-edge optical properties is studied in EuTe layers. In several magneto-optical experiments, the absorption and emission are described as well as the related Stokes shift. Specifically, we present the first experimental report of the photoluminescence excitation (PLE) spectrum in Faraday configuration. The PLE spectra shows to be related with the absorption spectra through the observation of resonance between the excitation light and the zero-field band-gap. A new emission line appears at 1.6 eV at a moderate magnetic field in the photoluminescence (PL) spectra. Furthermore, we examine the absorption and PL red-shift induced by the magnetic field in the light of the d-f exchange interaction energy involved in these processes. Whereas the absorption red-shift shows a quadratic dependence on the field, the PL red-shift shows a linear dependence which is explained by spin relaxation of the excited state.
Resumo:
We construct static and time-dependent exact soliton solutions with nontrivial Hopf topological charge for a field theory in 3 + 1 dimensions with the target space being the two dimensional sphere S(2). The model considered is a reduction of the so-called extended Skyrme-Faddeev theory by the removal of the quadratic term in derivatives of the fields. The solutions are constructed using an ansatz based on the conformal and target space symmetries. The solutions are said self-dual because they solve first order differential equations which together with some conditions on the coupling constants, imply the second order equations of motion. The solutions belong to a sub-sector of the theory with an infinite number of local conserved currents. The equation for the profile function of the ansatz corresponds to the Bogomolny equation for the sine-Gordon model.
Resumo:
Fluorescence quenching of meso-tetrakis-4-sulfonatophenyl (TPPS4) and meso-tetrakis-4-N-methylpyridil (TMPyP) porphyrins is studied in aqueous solution and upon addition of micelles of sodium dodecylsulfate (SDS), cetyltrimethylammonium chloride (CTAC), N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and t-octylphenoxypolyethoxyethanol (Triton X-100). Potassium iodide (KI) was used as quencher. Steady-state Stern-Volmer plots were best fitted by a quadratic equation, including dynamic (K-D) and static (K-s) quenching. Ks was significantly smaller than K-D. Frequency-domain fluorescence lifetimes allowed estimating bimolecular quenching constants, k(q). At 25 degrees C, in aqueous solution, TMPyP shows k(q), values a factor of 2-3 higher than the diffusional limit. TPPS4 shows collisional quenching with pH dependent k(q) values. For TMPyP quenching results are consistent with reported binding constants: a significant reduction of quenching takes place for SDS, a moderate reduction is observed for H PS and almost no change is seen for Triton X-100. Similar data were obtained at 50 C. For CTAC-TPPS4 system an enhancement of quenching was observed as compared to pure buffer. This is probably associated to accumulation of iodide at the cationic micellar interface. The attraction between CTAC headgroups and 1(-), and repulsion between SDS and 1(-), enhances and reduces the fluorescence quenching, respectively, of porphyrins located at the micellar interface. The small quenching of TPPS4 in Triton X-100 is consistent with strong binding as reported in the literature. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
2D electrophoresis is a well-known method for protein separation which is extremely useful in the field of proteomics. Each spot in the image represents a protein accumulation and the goal is to perform a differential analysis between pairs of images to study changes in protein content. It is thus necessary to register two images by finding spot correspondences. Although it may seem a simple task, generally, the manual processing of this kind of images is very cumbersome, especially when strong variations between corresponding sets of spots are expected (e.g. strong non-linear deformations and outliers). In order to solve this problem, this paper proposes a new quadratic assignment formulation together with a correspondence estimation algorithm based on graph matching which takes into account the structural information between the detected spots. Each image is represented by a graph and the task is to find a maximum common subgraph. Successful experimental results using real data are presented, including an extensive comparative performance evaluation with ground-truth data. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Calculations of local influence curvatures and leverage have been well developed when the parameters are unrestricted. In this article, we discuss the assessment of local influence and leverage under linear equality parameter constraints with extensions to inequality constraints. Using a penalized quadratic function we express the normal curvature of local influence for arbitrary perturbation schemes and the generalized leverage matrix in interpretable forms, which depend on restricted and unrestricted components. The results are quite general and can be applied in various statistical models. In particular, we derive the normal curvature under three useful perturbation schemes for generalized linear models. Four illustrative examples are analyzed by the methodology developed in the article.
Resumo:
In this work we construct the stationary measure of the N species totally asymmetric simple exclusion process in a matrix product formulation. We make the connection between the matrix product formulation and the queueing theory picture of Ferrari and Martin. In particular, in the standard representation, the matrices act on the space of queue lengths. For N > 2 the matrices in fact become tensor products of elements of quadratic algebras. This enables us to give a purely algebraic proof of the stationary measure which we present for N=3.