982 resultados para Power conversion
Resumo:
Positive selection is widely estimated from protein coding sequence alignments by the nonsynonymous-to-synonymous ratio omega. Increasingly elaborate codon models are used in a likelihood framework for this estimation. Although there is widespread concern about the robustness of the estimation of the omega ratio, more efforts are needed to estimate this robustness, especially in the context of complex models. Here, we focused on the branch-site codon model. We investigated its robustness on a large set of simulated data. First, we investigated the impact of sequence divergence. We found evidence of underestimation of the synonymous substitution rate for values as small as 0.5, with a slight increase in false positives for the branch-site test. When dS increases further, underestimation of dS is worse, but false positives decrease. Interestingly, the detection of true positives follows a similar distribution, with a maximum for intermediary values of dS. Thus, high dS is more of a concern for a loss of power (false negatives) than for false positives of the test. Second, we investigated the impact of GC content. We showed that there is no significant difference of false positives between high GC (up to similar to 80%) and low GC (similar to 30%) genes. Moreover, neither shifts of GC content on a specific branch nor major shifts in GC along the gene sequence generate many false positives. Our results confirm that the branch-site is a very conservative test.
Resumo:
Hysteresis cycles are very important features of energy conversion and harvesting devices, such as batteries. The efficiency of these may be strongly affected by the physical size of the system. Here, we show that in systems which are small enough, the existence of physical boundaries which produce nonhomogeneities of the interaction potential gives rise to inflections and barriers in the associated free energy. This in turn brings on irreversible processes which can be triggered under suitable external conditions imposed by a heat bath. As an example, by controlling the temperature, the state of a small system may be impelled to oscillate between two different structural configurations or aggregation states avoiding equilibrium coexistence and therefore dissipating energy. This cyclical behavior associated with a hysteresis cycle may be prototypical of energy conversion, storage, or generating nanodevices, as exemplified by Li-ion insertion batteries.
Resumo:
Angioedema is a rare side effect of angiotensin converting enzyme (ACE) inhibitors. Its cause is probably related to the accumulation of bradykinin and substance P, i.e. two proinflammatory peptides normally inactivated by ACE. Angioedema occurs most of the time at the early phase of treatment, but may also develop during long-term treatment. It might involve the gastro-intestinal tract, leading to abdominal pain, vomiting and/or diarrhea, as well as pancreatitis. Dipeptidyl-ptidase-4 (DPP-4) is another enzyme allowing the degradation of bradykinin and substance P. Co-administering an ACE inhibitor and a DPP-4 inhibitor (as an antidiabetic agent) increases significantly the risk of angioedema.
Resumo:
We present a new asymptotic formula for the maximum static voltage in a simplified model for on-chip power distribution networks of array bonded integrated circuits. In this model the voltage is the solution of a Poisson equation in an infinite planar domain whose boundary is an array of circular pads of radius ", and we deal with the singular limit Ɛ → 0 case. In comparison with approximations that appear in the electronic engineering literature, our formula is more complete since we have obtained terms up to order Ɛ15. A procedure will be presented to compute all the successive terms, which can be interpreted as using multipole solutions of equations involving spatial derivatives of functions. To deduce the formula we use the method of matched asymptotic expansions. Our results are completely analytical and we make an extensive use of special functions and of the Gauss constant G
Resumo:
Aims: To compare the frequency of life events in the year preceding illness onset in a series of Conversion Disorder (CD) patients, with those of a matched control group and to characterize the nature of those events in terms of "escape" potential. Traditional models of CD hypothesise that relevant stressful experiences are "converted" into physical symptoms to relieve psychological pressure, and that the resultant disability allows "escape" from the stressor, providing some advantage to the individual. Methods: The Life Events and Difficulties Schedule (LEDS) is a validated semi-structured interview designed to minimise recall and interviewer bias through rigorous assessment and independent rating of events. An additional "escape" rating was developed. Results: In the year preceding onset in 25 CD patients (mean age 38.9 years ± 8) and a similar matched period in 13 controls (mean age 36.2 years ± 10), no significant difference was found in the proportion of subjects having ≥ 1 severe event (CD 64%, controls 38%; p=0.2). In the last month preceding onset, a higher number of patients experienced ≥1 severe events than controls (52% vs 15%, odds ratio 5.95 (CI: 1.09-32.57)). Patients were twice as much more likely to have a severe escape events than controls, in the month preceding onset (44% vs 7%, odds ratio 9.43 (CI: 1.06-84.04). Conclusion: Preliminary data from this ongoing study suggest that the time frame (preceding month) and the nature ("escape") of the events may play an important role in identifying key events related to CD onset.
Resumo:
Combined Heat and Power (CHP) refers to the onsite production of electricity and thermal energy from the same fuel source. Integrating power and thermal energy production is more efficient than separate generating systems and used in the right situation can yield several benefits.
Resumo:
Combined Heat and Power (CHP) refers to the onsite production of electricity and thermal energy from the same fuel source. Integrating power and thermal energy production is more efficient than separate generating systems and used in the right situation can yield several benefits.
Resumo:
A financial power of attorney (FPOA) is a document authorizing someone else (an agent) to manage your finances on your behalf if you (the principal) become incapacitated and are unable to make financial management decisions for yourself. If you become unable to decide for yourself and you have not prepared a financial power of attorney, a court proceeding will likely be required before a loved one will be able to assume authority over at least some of your financial affairs. Your FPOA can be drafted to go into effect as soon as you sign it or it can become effective at a later date or only in the case that a physician certifies that you have become incapacitated.
Resumo:
A health care power of attorney (HC-POA) is a document authorizing an attorney-in-fact (your designated agent) to make health care decisions on your behalf if you (the principal) are unable, in the judgment of your attending physician, to make health care decisions. Health care is defined as any care, treatment, service or procedure required to maintain, diagnose or treat a physical or mental condition. Through your HC-POA, you may authorize someone else to consent, refuse or withdraw consent to health care on your behalf. The attorney-in-fact is permitted to make only health care-related decisions on your behalf. In exercising this authority, the attorney-in-fact must act consistently with your desires (as stated in the HC-POA document).
Resumo:
A health care power of attorney (HC-POA) is a document authorizing an attorney-in-fact (your designated agent) to make health care decisions on your behalf if you (the principal) are unable, in the judgment of your attending physician, to make health care decisions. Health care is defined as any care, treatment, service or procedure required to maintain, diagnose or treat a physical or mental condition. Through your HC-POA, you may authorize someone else to consent, refuse or withdraw consent to health care on your behalf.
Resumo:
PURPOSE: To use measurement by cycling power meters (Pmes) to evaluate the accuracy of commonly used models for estimating uphill cycling power (Pest). Experiments were designed to explore the influence of wind speed and steepness of climb on accuracy of Pest. The authors hypothesized that the random error in Pest would be largely influenced by the windy conditions, the bias would be diminished in steeper climbs, and windy conditions would induce larger bias in Pest. METHODS: Sixteen well-trained cyclists performed 15 uphill-cycling trials (range: length 1.3-6.3 km, slope 4.4-10.7%) in a random order. Trials included different riding position in a group (lead or follow) and different wind speeds. Pmes was quantified using a power meter, and Pest was calculated with a methodology used by journalists reporting on the Tour de France. RESULTS: Overall, the difference between Pmes and Pest was -0.95% (95%CI: -10.4%, +8.5%) for all trials and 0.24% (-6.1%, +6.6%) in conditions without wind (<2 m/s). The relationship between percent slope and the error between Pest and Pmes were considered trivial. CONCLUSIONS: Aerodynamic drag (affected by wind velocity and orientation, frontal area, drafting, and speed) is the most confounding factor. The mean estimated values are close to the power-output values measured by power meters, but the random error is between ±6% and ±10%. Moreover, at the power outputs (>400 W) produced by professional riders, this error is likely to be higher. This observation calls into question the validity of releasing individual values without reporting the range of random errors.
Resumo:
Abstract.
Resumo:
Voltage fluctuations caused by parasitic impedances in the power supply rails of modern ICs are a major concern in nowadays ICs. The voltage fluctuations are spread out to the diverse nodes of the internal sections causing two effects: a degradation of performances mainly impacting gate delays anda noisy contamination of the quiescent levels of the logic that drives the node. Both effects are presented together, in thispaper, showing than both are a cause of errors in modern and future digital circuits. The paper groups both error mechanismsand shows how the global error rate is related with the voltage deviation and the period of the clock of the digital system.
Resumo:
This paper presents a probabilistic approach to model the problem of power supply voltage fluctuations. Error probability calculations are shown for some 90-nm technology digital circuits.The analysis here considered gives the timing violation error probability as a new design quality factor in front of conventional techniques that assume the full perfection of the circuit. The evaluation of the error bound can be useful for new design paradigms where retry and self-recoveringtechniques are being applied to the design of high performance processors. The method here described allows to evaluate the performance of these techniques by means of calculating the expected error probability in terms of power supply distribution quality.