931 resultados para Optical splitter
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Er3+ emission in the wide bandgap matrix SnO2 is observed either through a direct Er ion excitation process as well as by an indirect process, through energy transfer in samples codoped with Yb3+ ions. Electron-hole generation in the tin dioxide matrix is also used to promote rare-earth ion excitation. Photoluminescence spectra as function of temperature indicate a slight decrease in the emission intensity with temperature increase, yielding low activation energy, about 3.8meV, since the emission even at room temperature is rather considerable.
Resumo:
We report optical and morphological properties of poly(2-methoxy-5-hexyloxy-p-phenylenevinylene) (OC1OC6-PPV) films processed by casting, spin-coating (SC) and Langmuir-Blodgett (LB) techniques. The absorption spectra are practically the same, with an absorption maximum at approximately at 500 nm. For the photoluminescence (PL) spectra at low temperature (T=10K), a small but significant difference was noted in the cast film, in comparison with the LB and SC films. The zero-phonon transition shifted from 609 nm for the LB film to 615 and 621 nm for the SC and cast films, respectively. At room temperature, the PL spectra are similar for all films, and blue shifted by ca. 25 nm in comparison with the spectra at low temperature due to thermal disorder. Using atomic force microscopy (AFM) we inferred that the distinctive behavior of the cast film, probably associated with structural defects, is related to the large thickness of this film. The surface roughness, which was surprisingly higher for the LB film, apparently played no role in the emission properties of OC1OC6-PPV films.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
HfO2-(3-glycidoxipropil)trimethoxisilane (GPTS) planar waveguides were prepared by a sol-gel route. A stable sol of Hafnia nanocrystals was prepared and characterized by photon correlation spectroscopy and high resolution transmission electron microscopy. The suspension was incorporated in GPTS host and the resulting sol was deposited on borosilicate substrates by the spin coating technique. Optical properties such as refractive index, thickness, number of propagating modes, and attenuation coefficient were measured at 632.8, 543.5, and 1550 nm by the prism coupling technique as a function of the HfO2 content. (C) 2000 American Institute of Physics. [S0003-6951(00)03348-9].
Resumo:
Droplets formed at the tip of a tube under the same conditions possess extreme uniformity of form, volume and weight. These properties of liquid drop formation have been known for a long time and consequently many applications for the drop have been found in instrumentation and chemical analysis methods. In the present paper, we report on the analytical use of a dynamic LED-based flow-through optical absorption detector with optical path length controlled by continuous dropping of a solution. This arrangement consists of a flow cell built within a high-intensity red LED (lambda (max)=630 nm). The feasibility of the detector is demonstrated by colorimetric determination of methylene blue, and ammonium by Berthelot's reaction, in a flow-injection system. For ammonium, the reaction forms a blue dye (indophenol) with a maximum absorption at 630-650 nm. The detection limit, considered as 3 times the signal of the blank, is better than 125 mu g l(-1). The small flow cell represents a good combination of optical path length, low volume and fast washout. This detector can be used advantageously in automated methods and can represent a solution to problems of optical detection involving gas bubbles and precipitation of particles in turbidimetric applications.
Resumo:
A significant part of film production by the coating industry is based on wet bench processes, where better understanding of their temporal dynamics could facilitate control and optimization. In this work, in situ laser interferometry is applied to study properties of flowing liquids and quantitatively monitor the dip coating batch process. Two oil standards Newtonian, non-volatile, with constant refractive indices and distinct flow properties - were measured under several withdrawing speeds. The dynamics of film physical thickness then depends on time as t(-1/2), and flow characterization becomes possible with high precision (linear slope uncertainty of +/-0.04%). Resulting kinematic viscosities for OP60 and OP400 are 1,17 +/- 0,03. St and 9,9 +/- 0,2 St, respectively. These results agree with nominal values, as provided by the manufacturer. For more complex films (a multi-component sol-gel Zirconyl Chloride aqueous solution) with a varying refractive index, through a direct polarimetric measurement, allowing also determination of the temporal evolution of physical thickness (uncertainty of +/- 0,007 microns) is also determined during dip coating.
Resumo:
Organic-inorganic hybrids were prepared using ureapropyltriethoxysilane, methacryloxypropyltrimethoxysilane and acrylic acid modified zirconium(IV) n-propoxide precursors and were characterized by small angle X-ray scattering, X-ray diffraction and photoluminescence spectroscopy. The results indicate an effective interaction between the zirconium-based nanoparticles and the siliceous nanodomains that induces changes in the hybrids' emission features. Planar waveguides were obtained by spin-coating of the prepared sols on sodalime and silica substrates. Refractive index, thickness, number of propagating modes, and attenuation coefficient were measured at 543.5, 632.8 and 1550 nm by the prism coupling technique. The synergism between the two hybrid precursors resulted in monomode planar waveguides with low losses in the infrared ( from 0.6-1.1 dB cm(-1)) which also support a number of propagating modes in the visible ( losses from 0.4-1.5 dB cm(-1)). Channel waveguides were also obtained by UV photopatterning using amplitude or phase masks and propagating modes were observed at 1550 nm.
Resumo:
We have utilized infra-red and optical absorption measurements, grazing incidence X-ray diffraction (GIXRD) and extended X-ray absorption fine structure (EXAFS) measurements to investigate the influence of hydrogenation on the optical and structural properties of GaAs thin films prepared by rf-magnetron sputtering. Hydrogenation induces distinct changes in the optical properties, namely shifts in the absorption edges and reduction of the Urbach energy. Such modifications are correlated to a reduction in structural disorder as determined by EXAFS and the increase of crystallinity determined by GIXRD. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The magneto-optical rotation at room temperature was measured for three Ga:S:La:O chalcogenide glasses at several laser lines in the visible. The first sample was a binary system constituted by 70 mol % Ga2S3 and 30 mol % La2O3, whereas in the second and third ones the lanthanum oxide was partially substituted by lanthanum sulfide, keeping the amount of gallium sulfide fixed. A pulsed magnetic field between 50 and 80 kG was used for the Faraday rotation measurements. The Verdet constant for one of the ternary samples was found to be as high as 0.205 min G(-1) cm(-1) at 543 nm, indicating that these chalcogenide glasses are very promising for magneto-optical applications. The data for each sample were fitted using the expected analytical expression for the magneto-optical dispersion. Measurements of the refractive index of the glasses at 632.8 nm are also reported. Data on the magneto-optical properties of two high Verdet constant, heavy-metal oxide diamagnetic glasses are also included for comparison. (C) 1999 Society of Photo-Optical Instrumentation Engineers. [S0091-3286(99)00102-6].
Resumo:
Tungstate fluorophosphate glasses of good optical quality were synthesized by fusion of the components and casting under air atmosphere. The absorption spectra from near-infrared to visible were obtained and the Judd-Ofelt parameters determined from the absorption bands. Transition probabilities, excited state lifetimes and transition branching ratios, were, determined from the measurements. Pumping with a 354.7 nm beam from a pulsed laser. resulted in emission at 450 nm. due to transition D-1(2)-->F-3(4) in Tm3+ ions and a broadband emission centered at approximate to 550 nm attributed to the glass matrix. When pumping at 650 nm, two emission bands at 450 nm (D-1(2)-->F-3(4)) and at 790 nm (H-3(4)-->H-3(6)) were observed. Excitation spectra were also obtained in order to understand the origin of both emissions. Theoretical and experimental lifetimes were determined and,the results were explained in terms of multiphonon relaxation. (C) 2003 American Institute of Physics.
Resumo:
We have been developing a computational code to project optical lenses, with low aberration effects. Our main interest is model the human eye, particularly, project special corrective lenses. As the lens shape is the focus of the optimization, we have coupled a ray tracing method with Monte Carlo techniques. The initial results indicated that the algorithm must be improved in terms of resolution and reliability.
Resumo:
Cubic phase group III-nitrides were grown using RF plasma assisted Molecular Beam Epitaxy on GaAs (001) substrates. High-resolution X-ray diffraction, photoluminescence, cathodoluminescence and photoreflectance measurements were employed to characterize the structural and optical properties of GaN/AlxGa1-xN Multi Quantum Well (MQW) structures, in which both Aluminum content and well widths were varied. The observed quantized states are in agreement with first-principles based theoretical calculations.
Resumo:
The yeast Saccharomyces cerevisiae was immobilized in cubes of polyurethane foam and the ability of this immobilized material to separate Sb(III) and Sb(V) was investigated. A method based on sequential determination of total Sb (after on-line reduction of Sb(V) to Sb(III) with thiourea) and Sb(Ill) (after on-line solid-liquid phase extraction) by hydride generation inductively coupled plasma optical emission spectrometry is proposed. A flow system assembled with solenoid valves was used to manage all stages of the process. The effects of pH, sample loading and elution flow rates on solid-liquid phase extraction of Sb(III) were evaluated. Also, the parameters related to online pre-reduction (reaction coil and flow rates) were optimized. Detection limits of 0.8 and 0.15 mu g L-1 were obtained for total Sb and Sb (III), respectively. The proposed method was applied to the analysis of river water and effluent samples. The results obtained for the determination of total Sb were in agreement with expected values, including the river water Standard Reference Material 1640 certified by the National Institute of Standards and Technology (NIST). Recoveries of Sb(III) and Sb(V) in spiked samples were between 81 19 and I I I 15% when 120 s of sample loading were used. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Photoconductivity of SnO2 sol-gel films is excited, at low temperature, by using a 266 nm line-fourth harmonic-of a Nd:YAG laser. This line has above bandgap energy and promotes generation of electron-hole pairs, which recombines with oxygen adsorbed at grain boundary. The conductivity increases up to 40 times. After removing the illumination on an undoped SnO2 film, the conductivity remains unchanged, as long as the temperature is kept constant. Adsorbed oxygen ions recombine with photogenerated holes and are continuously evacuated from the system, leaving a net concentration of free electrons into the material, responsible for the increase in the conductivity. For Er doped SnO2, the excitation of conductivity by the laser line has similar behavior, however after removing illumination, the conductivity decreases with exponential-like decay. (C) 2003 Elsevier Ltd. All rights reserved.