944 resultados para Mixed binary linear programming


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generalized linear mixed models with semiparametric random effects are useful in a wide variety of Bayesian applications. When the random effects arise from a mixture of Dirichlet process (MDP) model, normal base measures and Gibbs sampling procedures based on the Pólya urn scheme are often used to simulate posterior draws. These algorithms are applicable in the conjugate case when (for a normal base measure) the likelihood is normal. In the non-conjugate case, the algorithms proposed by MacEachern and Müller (1998) and Neal (2000) are often applied to generate posterior samples. Some common problems associated with simulation algorithms for non-conjugate MDP models include convergence and mixing difficulties. This paper proposes an algorithm based on the Pólya urn scheme that extends the Gibbs sampling algorithms to non-conjugate models with normal base measures and exponential family likelihoods. The algorithm proceeds by making Laplace approximations to the likelihood function, thereby reducing the procedure to that of conjugate normal MDP models. To ensure the validity of the stationary distribution in the non-conjugate case, the proposals are accepted or rejected by a Metropolis-Hastings step. In the special case where the data are normally distributed, the algorithm is identical to the Gibbs sampler.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In epidemiological work, outcomes are frequently non-normal, sample sizes may be large, and effects are often small. To relate health outcomes to geographic risk factors, fast and powerful methods for fitting spatial models, particularly for non-normal data, are required. We focus on binary outcomes, with the risk surface a smooth function of space. We compare penalized likelihood models, including the penalized quasi-likelihood (PQL) approach, and Bayesian models based on fit, speed, and ease of implementation. A Bayesian model using a spectral basis representation of the spatial surface provides the best tradeoff of sensitivity and specificity in simulations, detecting real spatial features while limiting overfitting and being more efficient computationally than other Bayesian approaches. One of the contributions of this work is further development of this underused representation. The spectral basis model outperforms the penalized likelihood methods, which are prone to overfitting, but is slower to fit and not as easily implemented. Conclusions based on a real dataset of cancer cases in Taiwan are similar albeit less conclusive with respect to comparing the approaches. The success of the spectral basis with binary data and similar results with count data suggest that it may be generally useful in spatial models and more complicated hierarchical models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the simultaneous estimation of a large number of related quantities, multilevel models provide a formal mechanism for efficiently making use of the ensemble of information for deriving individual estimates. In this article we investigate the ability of the likelihood to identify the relationship between signal and noise in multilevel linear mixed models. Specifically, we consider the ability of the likelihood to diagnose conjugacy or independence between the signals and noises. Our work was motivated by the analysis of data from high-throughput experiments in genomics. The proposed model leads to a more flexible family. However, we further demonstrate that adequately capitalizing on the benefits of a well fitting fully-specified likelihood in the terms of gene ranking is difficult.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Aim In patients with cystic fibrosis (CF) the architecture of the developing lungs and the ventilation of lung units are progressively affected, influencing intrapulmonary gas mixing and gas exchange. We examined the long-term course of blood gas measurements in relation to characteristics of lung function and the influence of different CFTR genotype upon this process. Methods Serial annual measurements of PaO2 and PaCO2 assessed in relation to lung function, providing functional residual capacity (FRCpleth), lung clearance index (LCI), trapped gas (VTG), airway resistance (sReff), and forced expiratory indices (FEV1, FEF50), were collected in 178 children (88 males; 90 females) with CF, over an age range of 5 to 18 years. Linear mixed model analysis and binary logistic regression analysis were used to define predominant lung function parameters influencing oxygenation and carbon dioxide elimination. Results PaO2 decreased linearly from age 5 to 18 years, and was mainly associated with FRCpleth, (p < 0.0001), FEV1 (p < 0.001), FEF50 (p < 0.002), and LCI (p < 0.002), indicating that oxygenation was associated with the degree of pulmonary hyperinflation, ventilation inhomogeneities and impeded airway function. PaCO2 showed a transitory phase of low PaCO2 values, mainly during the age range of 5 to 12 years. Both PaO2 and PaCO2 presented with different progression slopes within specific CFTR genotypes. Conclusion In the long-term evaluation of gas exchange characteristics, an association with different lung function patterns was found and was closely related to specific genotypes. Early examination of blood gases may reveal hypocarbia, presumably reflecting compensatory mechanisms to improve oxygenation.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports a comparison of three modeling strategies for the analysis of hospital mortality in a sample of general medicine inpatients in a Department of Veterans Affairs medical center. Logistic regression, a Markov chain model, and longitudinal logistic regression were evaluated on predictive performance as measured by the c-index and on accuracy of expected numbers of deaths compared to observed. The logistic regression used patient information collected at admission; the Markov model was comprised of two absorbing states for discharge and death and three transient states reflecting increasing severity of illness as measured by laboratory data collected during the hospital stay; longitudinal regression employed Generalized Estimating Equations (GEE) to model covariance structure for the repeated binary outcome. Results showed that the logistic regression predicted hospital mortality as well as the alternative methods but was limited in scope of application. The Markov chain provides insights into how day to day changes of illness severity lead to discharge or death. The longitudinal logistic regression showed that increasing illness trajectory is associated with hospital mortality. The conclusion is reached that for standard applications in modeling hospital mortality, logistic regression is adequate, but for new challenges facing health services research today, alternative methods are equally predictive, practical, and can provide new insights. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Logistic regression is one of the most important tools in the analysis of epidemiological and clinical data. Such data often contain missing values for one or more variables. Common practice is to eliminate all individuals for whom any information is missing. This deletion approach does not make efficient use of available information and often introduces bias.^ Two methods were developed to estimate logistic regression coefficients for mixed dichotomous and continuous covariates including partially observed binary covariates. The data were assumed missing at random (MAR). One method (PD) used predictive distribution as weight to calculate the average of the logistic regressions performing on all possible values of missing observations, and the second method (RS) used a variant of resampling technique. Additional seven methods were compared with these two approaches in a simulation study. They are: (1) Analysis based on only the complete cases, (2) Substituting the mean of the observed values for the missing value, (3) An imputation technique based on the proportions of observed data, (4) Regressing the partially observed covariates on the remaining continuous covariates, (5) Regressing the partially observed covariates on the remaining continuous covariates conditional on response variable, (6) Regressing the partially observed covariates on the remaining continuous covariates and response variable, and (7) EM algorithm. Both proposed methods showed smaller standard errors (s.e.) for the coefficient involving the partially observed covariate and for the other coefficients as well. However, both methods, especially PD, are computationally demanding; thus for analysis of large data sets with partially observed covariates, further refinement of these approaches is needed. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixed longitudinal designs are important study designs for many areas of medical research. Mixed longitudinal studies have several advantages over cross-sectional or pure longitudinal studies, including shorter study completion time and ability to separate time and age effects, thus are an attractive choice. Statistical methodology used in general longitudinal studies has been rapidly developing within the last few decades. Common approaches for statistical modeling in studies with mixed longitudinal designs have been the linear mixed-effects model incorporating an age or time effect. The general linear mixed-effects model is considered an appropriate choice to analyze repeated measurements data in longitudinal studies. However, common use of linear mixed-effects model on mixed longitudinal studies often incorporates age as the only random-effect but fails to take into consideration the cohort effect in conducting statistical inferences on age-related trajectories of outcome measurements. We believe special attention should be paid to cohort effects when analyzing data in mixed longitudinal designs with multiple overlapping cohorts. Thus, this has become an important statistical issue to address. ^ This research aims to address statistical issues related to mixed longitudinal studies. The proposed study examined the existing statistical analysis methods for the mixed longitudinal designs and developed an alternative analytic method to incorporate effects from multiple overlapping cohorts as well as from different aged subjects. The proposed study used simulation to evaluate the performance of the proposed analytic method by comparing it with the commonly-used model. Finally, the study applied the proposed analytic method to the data collected by an existing study Project HeartBeat!, which had been evaluated using traditional analytic techniques. Project HeartBeat! is a longitudinal study of cardiovascular disease (CVD) risk factors in childhood and adolescence using a mixed longitudinal design. The proposed model was used to evaluate four blood lipids adjusting for age, gender, race/ethnicity, and endocrine hormones. The result of this dissertation suggest the proposed analytic model could be a more flexible and reliable choice than the traditional model in terms of fitting data to provide more accurate estimates in mixed longitudinal studies. Conceptually, the proposed model described in this study has useful features, including consideration of effects from multiple overlapping cohorts, and is an attractive approach for analyzing data in mixed longitudinal design studies.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El cálculo de relaciones binarias fue creado por De Morgan en 1860 para ser posteriormente desarrollado en gran medida por Peirce y Schröder. Tarski, Givant, Freyd y Scedrov demostraron que las álgebras relacionales son capaces de formalizar la lógica de primer orden, la lógica de orden superior así como la teoría de conjuntos. A partir de los resultados matemáticos de Tarski y Freyd, esta tesis desarrolla semánticas denotacionales y operacionales para la programación lógica con restricciones usando el álgebra relacional como base. La idea principal es la utilización del concepto de semántica ejecutable, semánticas cuya característica principal es el que la ejecución es posible utilizando el razonamiento estándar del universo semántico, este caso, razonamiento ecuacional. En el caso de este trabajo, se muestra que las álgebras relacionales distributivas con un operador de punto fijo capturan toda la teoría y metateoría estándar de la programación lógica con restricciones incluyendo los árboles utilizados en la búsqueda de demostraciones. La mayor parte de técnicas de optimización de programas, evaluación parcial e interpretación abstracta pueden ser llevadas a cabo utilizando las semánticas aquí presentadas. La demostración de la corrección de la implementación resulta extremadamente sencilla. En la primera parte de la tesis, un programa lógico con restricciones es traducido a un conjunto de términos relacionales. La interpretación estándar en la teoría de conjuntos de dichas relaciones coincide con la semántica estándar para CLP. Las consultas contra el programa traducido son llevadas a cabo mediante la reescritura de relaciones. Para concluir la primera parte, se demuestra la corrección y equivalencia operacional de esta nueva semántica, así como se define un algoritmo de unificación mediante la reescritura de relaciones. La segunda parte de la tesis desarrolla una semántica para la programación lógica con restricciones usando la teoría de alegorías—versión categórica del álgebra de relaciones—de Freyd. Para ello, se definen dos nuevos conceptos de Categoría Regular de Lawvere y _-Alegoría, en las cuales es posible interpretar un programa lógico. La ventaja fundamental que el enfoque categórico aporta es la definición de una máquina categórica que mejora e sistema de reescritura presentado en la primera parte. Gracias al uso de relaciones tabulares, la máquina modela la ejecución eficiente sin salir de un marco estrictamente formal. Utilizando la reescritura de diagramas, se define un algoritmo para el cálculo de pullbacks en Categorías Regulares de Lawvere. Los dominios de las tabulaciones aportan información sobre la utilización de memoria y variable libres, mientras que el estado compartido queda capturado por los diagramas. La especificación de la máquina induce la derivación formal de un juego de instrucciones eficiente. El marco categórico aporta otras importantes ventajas, como la posibilidad de incorporar tipos de datos algebraicos, funciones y otras extensiones a Prolog, a la vez que se conserva el carácter 100% declarativo de nuestra semántica. ABSTRACT The calculus of binary relations was introduced by De Morgan in 1860, to be greatly developed by Peirce and Schröder, as well as many others in the twentieth century. Using different formulations of relational structures, Tarski, Givant, Freyd, and Scedrov have shown how relation algebras can provide a variable-free way of formalizing first order logic, higher order logic and set theory, among other formal systems. Building on those mathematical results, we develop denotational and operational semantics for Constraint Logic Programming using relation algebra. The idea of executable semantics plays a fundamental role in this work, both as a philosophical and technical foundation. We call a semantics executable when program execution can be carried out using the regular theory and tools that define the semantic universe. Throughout this work, the use of pure algebraic reasoning is the basis of denotational and operational results, eliminating all the classical non-equational meta-theory associated to traditional semantics for Logic Programming. All algebraic reasoning, including execution, is performed in an algebraic way, to the point we could state that the denotational semantics of a CLP program is directly executable. Techniques like optimization, partial evaluation and abstract interpretation find a natural place in our algebraic models. Other properties, like correctness of the implementation or program transformation are easy to check, as they are carried out using instances of the general equational theory. In the first part of the work, we translate Constraint Logic Programs to binary relations in a modified version of the distributive relation algebras used by Tarski. Execution is carried out by a rewriting system. We prove adequacy and operational equivalence of the semantics. In the second part of the work, the relation algebraic approach is improved by using allegory theory, a categorical version of the algebra of relations developed by Freyd and Scedrov. The use of allegories lifts the semantics to typed relations, which capture the number of logical variables used by a predicate or program state in a declarative way. A logic program is interpreted in a _-allegory, which is in turn generated from a new notion of Regular Lawvere Category. As in the untyped case, program translation coincides with program interpretation. Thus, we develop a categorical machine directly from the semantics. The machine is based on relation composition, with a pullback calculation algorithm at its core. The algorithm is defined with the help of a notion of diagram rewriting. In this operational interpretation, types represent information about memory allocation and the execution mechanism is more efficient, thanks to the faithful representation of shared state by categorical projections. We finish the work by illustrating how the categorical semantics allows the incorporation into Prolog of constructs typical of Functional Programming, like abstract data types, and strict and lazy functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of (static and dynamics)programs with constant and linear elements has shown good behaviour. It seems so natural to combine both advantages so that the results will not be affected by local distortions. This paper will be dedicated to presenting the reserch of mixed elements and the way to solve the over-determination that appears in some cases. Although all the study has been done with the potential theory, its application to elastic problems is straightforward.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a novel fast random search clustering (RSC) algorithm for mixing matrix identification in multiple input multiple output (MIMO) linear blind inverse problems with sparse inputs. The proposed approach is based on the clustering of the observations around the directions given by the columns of the mixing matrix that occurs typically for sparse inputs. Exploiting this fact, the RSC algorithm proceeds by parameterizing the mixing matrix using hyperspherical coordinates, randomly selecting candidate basis vectors (i.e. clustering directions) from the observations, and accepting or rejecting them according to a binary hypothesis test based on the Neyman–Pearson criterion. The RSC algorithm is not tailored to any specific distribution for the sources, can deal with an arbitrary number of inputs and outputs (thus solving the difficult under-determined problem), and is applicable to both instantaneous and convolutive mixtures. Extensive simulations for synthetic and real data with different number of inputs and outputs, data size, sparsity factors of the inputs and signal to noise ratios confirm the good performance of the proposed approach under moderate/high signal to noise ratios. RESUMEN. Método de separación ciega de fuentes para señales dispersas basado en la identificación de la matriz de mezcla mediante técnicas de "clustering" aleatorio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: This study examined the daily surgical scheduling problem in a teaching hospital. This problem relates to the use of multiple operating rooms and different types of surgeons in a typical surgical day with deterministic operation durations (preincision, incision, and postincision times). Teaching hospitals play a key role in the health-care system; however, existing models assume that the duration of surgery is independent of the surgeon's skills. This problem has not been properly addressed in other studies. We analyze the case of a Spanish public hospital, in which continuous pressures and budgeting reductions entail the more efficient use of resources. Methods: To obtain an optimal solution for this problem, we developed a mixed-integer programming model and user-friendly interface that facilitate the scheduling of planned operations for the following surgical day. We also implemented a simulation model to assist the evaluation of different dispatching policies for surgeries and surgeons. The typical aspects we took into account were the type of surgeon, potential overtime, idling time of surgeons, and the use of operating rooms. Results: It is necessary to consider the expertise of a given surgeon when formulating a schedule: such skill can decrease the probability of delays that could affect subsequent surgeries or cause cancellation of the final surgery. We obtained optimal solutions for a set of given instances, which we obtained through surgical information related to acceptable times collected from a Spanish public hospital. Conclusions: We developed a computer-aided framework with a user-friendly interface for use by a surgical manager that presents a 3-D simulation of the problem. Additionally, we obtained an efficient formulation for this complex problem. However, the spread of this kind of operation research in Spanish public health hospitals will take a long time since there is a lack of knowledge of the beneficial techniques and possibilities that operational research can offer for the health-care system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los sistemas empotrados son cada día más comunes y complejos, de modo que encontrar procesos seguros, eficaces y baratos de desarrollo software dirigidos específicamente a esta clase de sistemas es más necesario que nunca. A diferencia de lo que ocurría hasta hace poco, en la actualidad los avances tecnológicos en el campo de los microprocesadores de los últimos tiempos permiten el desarrollo de equipos con prestaciones más que suficientes para ejecutar varios sistemas software en una única máquina. Además, hay sistemas empotrados con requisitos de seguridad (safety) de cuyo correcto funcionamiento depende la vida de muchas personas y/o grandes inversiones económicas. Estos sistemas software se diseñan e implementan de acuerdo con unos estándares de desarrollo software muy estrictos y exigentes. En algunos casos puede ser necesaria también la certificación del software. Para estos casos, los sistemas con criticidades mixtas pueden ser una alternativa muy valiosa. En esta clase de sistemas, aplicaciones con diferentes niveles de criticidad se ejecutan en el mismo computador. Sin embargo, a menudo es necesario certificar el sistema entero con el nivel de criticidad de la aplicación más crítica, lo que hace que los costes se disparen. La virtualización se ha postulado como una tecnología muy interesante para contener esos costes. Esta tecnología permite que un conjunto de máquinas virtuales o particiones ejecuten las aplicaciones con unos niveles de aislamiento tanto temporal como espacial muy altos. Esto, a su vez, permite que cada partición pueda ser certificada independientemente. Para el desarrollo de sistemas particionados con criticidades mixtas se necesita actualizar los modelos de desarrollo software tradicionales, pues estos no cubren ni las nuevas actividades ni los nuevos roles que se requieren en el desarrollo de estos sistemas. Por ejemplo, el integrador del sistema debe definir las particiones o el desarrollador de aplicaciones debe tener en cuenta las características de la partición donde su aplicación va a ejecutar. Tradicionalmente, en el desarrollo de sistemas empotrados, el modelo en V ha tenido una especial relevancia. Por ello, este modelo ha sido adaptado para tener en cuenta escenarios tales como el desarrollo en paralelo de aplicaciones o la incorporación de una nueva partición a un sistema ya existente. El objetivo de esta tesis doctoral es mejorar la tecnología actual de desarrollo de sistemas particionados con criticidades mixtas. Para ello, se ha diseñado e implementado un entorno dirigido específicamente a facilitar y mejorar los procesos de desarrollo de esta clase de sistemas. En concreto, se ha creado un algoritmo que genera el particionado del sistema automáticamente. En el entorno de desarrollo propuesto, se han integrado todas las actividades necesarias para desarrollo de un sistema particionado, incluidos los nuevos roles y actividades mencionados anteriormente. Además, el diseño del entorno de desarrollo se ha basado en la ingeniería guiada por modelos (Model-Driven Engineering), la cual promueve el uso de los modelos como elementos fundamentales en el proceso de desarrollo. Así pues, se proporcionan las herramientas necesarias para modelar y particionar el sistema, así como para validar los resultados y generar los artefactos necesarios para el compilado, construcción y despliegue del mismo. Además, en el diseño del entorno de desarrollo, la extensión e integración del mismo con herramientas de validación ha sido un factor clave. En concreto, se pueden incorporar al entorno de desarrollo nuevos requisitos no-funcionales, la generación de nuevos artefactos tales como documentación o diferentes lenguajes de programación, etc. Una parte clave del entorno de desarrollo es el algoritmo de particionado. Este algoritmo se ha diseñado para ser independiente de los requisitos de las aplicaciones así como para permitir al integrador del sistema implementar nuevos requisitos del sistema. Para lograr esta independencia, se han definido las restricciones al particionado. El algoritmo garantiza que dichas restricciones se cumplirán en el sistema particionado que resulte de su ejecución. Las restricciones al particionado se han diseñado con una capacidad expresiva suficiente para que, con un pequeño grupo de ellas, se puedan expresar la mayor parte de los requisitos no-funcionales más comunes. Las restricciones pueden ser definidas manualmente por el integrador del sistema o bien pueden ser generadas automáticamente por una herramienta a partir de los requisitos funcionales y no-funcionales de una aplicación. El algoritmo de particionado toma como entradas los modelos y las restricciones al particionado del sistema. Tras la ejecución y como resultado, se genera un modelo de despliegue en el que se definen las particiones que son necesarias para el particionado del sistema. A su vez, cada partición define qué aplicaciones deben ejecutar en ella así como los recursos que necesita la partición para ejecutar correctamente. El problema del particionado y las restricciones al particionado se modelan matemáticamente a través de grafos coloreados. En dichos grafos, un coloreado propio de los vértices representa un particionado del sistema correcto. El algoritmo se ha diseñado también para que, si es necesario, sea posible obtener particionados alternativos al inicialmente propuesto. El entorno de desarrollo, incluyendo el algoritmo de particionado, se ha probado con éxito en dos casos de uso industriales: el satélite UPMSat-2 y un demostrador del sistema de control de una turbina eólica. Además, el algoritmo se ha validado mediante la ejecución de numerosos escenarios sintéticos, incluyendo algunos muy complejos, de más de 500 aplicaciones. ABSTRACT The importance of embedded software is growing as it is required for a large number of systems. Devising cheap, efficient and reliable development processes for embedded systems is thus a notable challenge nowadays. Computer processing power is continuously increasing, and as a result, it is currently possible to integrate complex systems in a single processor, which was not feasible a few years ago.Embedded systems may have safety critical requirements. Its failure may result in personal or substantial economical loss. The development of these systems requires stringent development processes that are usually defined by suitable standards. In some cases their certification is also necessary. This scenario fosters the use of mixed-criticality systems in which applications of different criticality levels must coexist in a single system. In these cases, it is usually necessary to certify the whole system, including non-critical applications, which is costly. Virtualization emerges as an enabling technology used for dealing with this problem. The system is structured as a set of partitions, or virtual machines, that can be executed with temporal and spatial isolation. In this way, applications can be developed and certified independently. The development of MCPS (Mixed-Criticality Partitioned Systems) requires additional roles and activities that traditional systems do not require. The system integrator has to define system partitions. Application development has to consider the characteristics of the partition to which it is allocated. In addition, traditional software process models have to be adapted to this scenario. The V-model is commonly used in embedded systems development. It can be adapted to the development of MCPS by enabling the parallel development of applications or adding an additional partition to an existing system. The objective of this PhD is to improve the available technology for MCPS development by providing a framework tailored to the development of this type of system and by defining a flexible and efficient algorithm for automatically generating system partitionings. The goal of the framework is to integrate all the activities required for developing MCPS and to support the different roles involved in this process. The framework is based on MDE (Model-Driven Engineering), which emphasizes the use of models in the development process. The framework provides basic means for modeling the system, generating system partitions, validating the system and generating final artifacts. The framework has been designed to facilitate its extension and the integration of external validation tools. In particular, it can be extended by adding support for additional non-functional requirements and support for final artifacts, such as new programming languages or additional documentation. The framework includes a novel partitioning algorithm. It has been designed to be independent of the types of applications requirements and also to enable the system integrator to tailor the partitioning to the specific requirements of a system. This independence is achieved by defining partitioning constraints that must be met by the resulting partitioning. They have sufficient expressive capacity to state the most common constraints and can be defined manually by the system integrator or generated automatically based on functional and non-functional requirements of the applications. The partitioning algorithm uses system models and partitioning constraints as its inputs. It generates a deployment model that is composed by a set of partitions. Each partition is in turn composed of a set of allocated applications and assigned resources. The partitioning problem, including applications and constraints, is modeled as a colored graph. A valid partitioning is a proper vertex coloring. A specially designed algorithm generates this coloring and is able to provide alternative partitions if required. The framework, including the partitioning algorithm, has been successfully used in the development of two industrial use cases: the UPMSat-2 satellite and the control system of a wind-power turbine. The partitioning algorithm has been successfully validated by using a large number of synthetic loads, including complex scenarios with more that 500 applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss linear Ricardo models with a range of parameters. We show that the exact boundary of the region of equilibria of these models is obtained by solving a simple integer programming problem. We show that there is also an exact correspondence between many of the equilibria resulting from families of linear models and the multiple equilibria of economies of scale models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a general approach to forming structure-activity relationships (SARs). This approach is based on representing chemical structure by atoms and their bond connectivities in combination with the inductive logic programming (ILP) algorithm PROGOL. Existing SAR methods describe chemical structure by using attributes which are general properties of an object. It is not possible to map chemical structure directly to attribute-based descriptions, as such descriptions have no internal organization. A more natural and general way to describe chemical structure is to use a relational description, where the internal construction of the description maps that of the object described. Our atom and bond connectivities representation is a relational description. ILP algorithms can form SARs with relational descriptions. We have tested the relational approach by investigating the SARs of 230 aromatic and heteroaromatic nitro compounds. These compounds had been split previously into two subsets, 188 compounds that were amenable to regression and 42 that were not. For the 188 compounds, a SAR was found that was as accurate as the best statistical or neural network-generated SARs. The PROGOL SAR has the advantages that it did not need the use of any indicator variables handcrafted by an expert, and the generated rules were easily comprehensible. For the 42 compounds, PROGOL formed a SAR that was significantly (P < 0.025) more accurate than linear regression, quadratic regression, and back-propagation. This SAR is based on an automatically generated structural alert for mutagenicity.