Computational Techniques for Spatial Logistic Regression with Large Datasets


Autoria(s): Paciorek, Christopher J.; Ryan, Louise
Data(s)

07/10/2005

Resumo

In epidemiological work, outcomes are frequently non-normal, sample sizes may be large, and effects are often small. To relate health outcomes to geographic risk factors, fast and powerful methods for fitting spatial models, particularly for non-normal data, are required. We focus on binary outcomes, with the risk surface a smooth function of space. We compare penalized likelihood models, including the penalized quasi-likelihood (PQL) approach, and Bayesian models based on fit, speed, and ease of implementation. A Bayesian model using a spectral basis representation of the spatial surface provides the best tradeoff of sensitivity and specificity in simulations, detecting real spatial features while limiting overfitting and being more efficient computationally than other Bayesian approaches. One of the contributions of this work is further development of this underused representation. The spectral basis model outperforms the penalized likelihood methods, which are prone to overfitting, but is slower to fit and not as easily implemented. Conclusions based on a real dataset of cancer cases in Taiwan are similar albeit less conclusive with respect to comparing the approaches. The success of the spectral basis with binary data and similar results with count data suggest that it may be generally useful in spatial models and more complicated hierarchical models.

Formato

application/pdf

Identificador

http://biostats.bepress.com/harvardbiostat/paper32

http://biostats.bepress.com/cgi/viewcontent.cgi?article=1032&context=harvardbiostat

Publicador

Collection of Biostatistics Research Archive

Fonte

Harvard University Biostatistics Working Paper Series

Palavras-Chave #Bayesian statistics; Fourier basis; FFT; generalized linear mixed model; geostatistics; spatial statistics #Epidemiology #Numerical Analysis and Computation #Statistical Models
Tipo

text