978 resultados para Mechanical Measurements
Resumo:
We describe a noniterative method for recovering optical absorption coefficient distribution from the absorbed energy map reconstructed using simulated and noisy boundary pressure measurements. The source reconstruction problem is first solved for the absorbed energy map corresponding to single- and multiple-source illuminations from the side of the imaging plane. It is shown that the absorbed energy map and the absorption coefficient distribution, recovered from the single-source illumination with a large variation in photon flux distribution, have signal-to-noise ratios comparable to those of the reconstructed parameters from a more uniform photon density distribution corresponding to multiple-source illuminations. The absorbed energy map is input as absorption coefficient times photon flux in the time-independent diffusion equation (DE) governing photon transport to recover the photon flux in a single step. The recovered photon flux is used to compute the optical absorption coefficient distribution from the absorbed energy map. In the absence of experimental data, we obtain the boundary measurements through Monte Carlo simulations, and we attempt to address the possible limitations of the DE model in the overall reconstruction procedure.
Resumo:
The Earth's ecosystems are protected from the dangerous part of the solar ultraviolet (UV) radiation by stratospheric ozone, which absorbs most of the harmful UV wavelengths. Severe depletion of stratospheric ozone has been observed in the Antarctic region, and to a lesser extent in the Arctic and midlatitudes. Concern about the effects of increasing UV radiation on human beings and the natural environment has led to ground based monitoring of UV radiation. In order to achieve high-quality UV time series for scientific analyses, proper quality control (QC) and quality assurance (QA) procedures have to be followed. In this work, practices of QC and QA are developed for Brewer spectroradiometers and NILU-UV multifilter radiometers, which measure in the Arctic and Antarctic regions, respectively. These practices are applicable to other UV instruments as well. The spectral features and the effect of different factors affecting UV radiation were studied for the spectral UV time series at Sodankylä. The QA of the Finnish Meteorological Institute's (FMI) two Brewer spectroradiometers included daily maintenance, laboratory characterizations, the calculation of long-term spectral responsivity, data processing and quality assessment. New methods for the cosine correction, the temperature correction and the calculation of long-term changes of spectral responsivity were developed. Reconstructed UV irradiances were used as a QA tool for spectroradiometer data. The actual cosine correction factor was found to vary between 1.08-1.12 and 1.08-1.13. The temperature characterization showed a linear temperature dependence between the instrument's internal temperature and the photon counts per cycle. Both Brewers have participated in international spectroradiometer comparisons and have shown good stability. The differences between the Brewers and the portable reference spectroradiometer QASUME have been within 5% during 2002-2010. The features of the spectral UV radiation time series at Sodankylä were analysed for the time period 1990-2001. No statistically significant long-term changes in UV irradiances were found, and the results were strongly dependent on the time period studied. Ozone was the dominant factor affecting UV radiation during the springtime, whereas clouds played a more important role during the summertime. During this work, the Antarctic NILU-UV multifilter radiometer network was established by the Instituto Nacional de Meteorogía (INM) as a joint Spanish-Argentinian-Finnish cooperation project. As part of this work, the QC/QA practices of the network were developed. They included training of the operators, daily maintenance, regular lamp tests and solar comparisons with the travelling reference instrument. Drifts of up to 35% in the sensitivity of the channels of the NILU-UV multifilter radiometers were found during the first four years of operation. This work emphasized the importance of proper QC/QA, including regular lamp tests, for the multifilter radiometers also. The effect of the drifts were corrected by a method scaling the site NILU-UV channels to those of the travelling reference NILU-UV. After correction, the mean ratios of erythemally-weighted UV dose rates measured during solar comparisons between the reference NILU-UV and the site NILU-UVs were 1.007±0.011 and 1.012±0.012 for Ushuaia and Marambio, respectively, when the solar zenith angle varied up to 80°. Solar comparisons between the NILU-UVs and spectroradiometers showed a ±5% difference near local noon time, which can be seen as proof of successful QC/QA procedures and transfer of irradiance scales. This work also showed that UV measurements made in the Arctic and Antarctic can be comparable with each other.
Resumo:
Atmospheric aerosol particles affect the global climate as well as human health. In this thesis, formation of nanometer sized atmospheric aerosol particles and their subsequent growth was observed to occur all around the world. Typical formation rate of 3 nm particles at varied from 0.01 to 10 cm-3s-1. One order of magnitude higher formation rates were detected in urban environment. Highest formation rates up to 105 cm-3s-1 were detected in coastal areas and in industrial pollution plumes. Subsequent growth rates varied from 0.01 to 20 nm h-1. Smallest growth rates were observed in polar areas and the largest in the polluted urban environment. This was probably due to competition between growth by condensation and loss by coagulation. Observed growth rates were used in the calculation of a proxy condensable vapour concentration and its source rate in vastly different environments from pristine Antarctica to polluted India. Estimated concentrations varied only 2 orders of magnitude, but the source rates for the vapours varied up to 4 orders of magnitude. Highest source rates were in New Delhi and lowest were in the Antarctica. Indirect methods were applied to study the growth of freshly formed particles in the atmosphere. Also a newly developed Water Condensation Particle Counter, TSI 3785, was found to be a potential candidate to detect water solubility and thus indirectly composition of atmospheric ultra-fine particles. Based on indirect methods, the relative roles of sulphuric acid, non-volatile material and coagulation were investigated in rural Melpitz, Germany. Condensation of non-volatile material explained 20-40% and sulphuric acid the most of the remaining growth up to a point, when nucleation mode reached 10 to 20 nm in diameter. Coagulation contributed typically less than 5%. Furthermore, hygroscopicity measurements were applied to detect the contribution of water soluble and insoluble components in Athens. During more polluted days, the water soluble components contributed more to the growth. During less anthropogenic influence, non-soluble compounds explained a larger fraction of the growth. In addition, long range transport to a measurement station in Finland in a relatively polluted air mass was found to affect the hygroscopicity of the particles. This aging could have implications to cloud formation far away from the pollution sources.
Resumo:
The mechanical properties of amorphous alloys have proven both scientifically unique and of potential practical interest, although the underlying deformation physics of these materials remain less firmly established as compared with crystalline alloys. In this article, we review recent advances in understanding the mechanical behavior of metallic glasses, with particular emphasis on the deformation and fracture mechanisms. Atomistic as well as continuum modeling and experimental work on elasticity, plastic flow and localization, fracture and fatigue are all discussed, and theoretical developments are connected, where possible, with macroscopic experimental responses. The role of glass structure on mechanical properties, and conversely, the effect of deformation upon glass structure, are also described. The mechanical properties of metallic glass-derivative materials – including in situ and ex situ composites, foams and nanocrystal-reinforced glasses – are reviewed as well. Finally, we identify a number of important unresolved issues for the field.
Resumo:
Volatile organic compounds (VOCs) affect atmospheric chemistry and thereafter also participate in the climate change in many ways. The long-lived greenhouse gases and tropospheric ozone are the most important radiative forcing components warming the climate, while aerosols are the most important cooling component. VOCs can have warming effects on the climate: they participate in tropospheric ozone formation and compete for oxidants with the greenhouse gases thus, for example, lengthening the atmospheric lifetime of methane. Some VOCs, on the other hand, cool the atmosphere by taking part in the formation of aerosol particles. Some VOCs, in addition, have direct health effects, such as carcinogenic benzene. VOCs are emitted into the atmosphere in various processes. Primary emissions of VOC include biogenic emissions from vegetation, biomass burning and human activities. VOCs are also produced in secondary emissions from the reactions of other organic compounds. Globally, forests are the largest source of VOC entering the atmosphere. This thesis focuses on the measurement results of emissions and concentrations of VOCs in one of the largest vegetation zones in the world, the boreal zone. An automated sampling system was designed and built for continuous VOC concentration and emission measurements with a proton transfer reaction - mass spectrometer (PTR-MS). The system measured one hour at a time in three-hourly cycles: 1) ambient volume mixing-ratios of VOCs in the Scots-pine-dominated boreal forest, 2) VOC fluxes above the canopy, and 3) VOC emissions from Scots pine shoots. In addition to the online PTR-MS measurements, we determined the composition and seasonality of the VOC emissions from a Siberian larch with adsorbent samples and GC-MS analysis. The VOC emissions from Siberian larch were reported for the fist time in the literature. The VOC emissions were 90% monoterpenes (mainly sabinene) and the rest sesquiterpenes (mainly a-farnesene). The normalized monoterpene emission potentials were highest in late summer, rising again in late autumn. The normalized sesquiterpene emission potentials were also highest in late summer, but decreased towards the autumn. The emissions of mono- and sesquiterpenes from the deciduous Siberian larch, as well as the emissions of monoterpenes measured from the evergreen Scots pine, were well described by the temperature-dependent algorithm. In the Scots-pine-dominated forest, canopy-scale emissions of monoterpenes and oxygenated VOCs (OVOCs) were of the same magnitude. Methanol and acetone were the most abundant OVOCs emitted from the forest and also in the ambient air. Annually, methanol and mixing ratios were of the order of 1 ppbv. The monoterpene and sum of isoprene 2-methyl-3-buten-2-ol (MBO) volume mixing-ratios were an order of magnitude lower. The majority of the monoterpene and methanol emissions from the Scots-pinedominated forest were explained by emissions from Scots pine shoots. The VOCs were divided into three classes based on the dynamics of the summer-time concentrations: 1) reactive compounds with local biological, anthropogenic or chemical sources (methanol, acetone, butanol and hexanal), 2) compounds whose emissions are only temperaturedependent (monoterpenes), 3) long-lived compounds (benzene, acetaldehyde). Biogenic VOC (methanol, acetone, isoprene MBO and monoterpene) volume mixing-ratios had clear diurnal patterns during summer. The ambient mixing ratios of other VOCs did not show this behaviour. During winter we did not observe systematical diurnal cycles for any of the VOCs. Different sources, removal processes and turbulent mixing explained the dynamics of the measured mixing-ratios qualitatively. However, quantitative understanding will require longterm emission measurements of the OVOCs and the use of comprehensive chemistry models. Keywords: Hydrocarbons, VOC, fluxes, volume mixing-ratio, boreal forest
Resumo:
Nucleation is the first step of a first order phase transition. A new phase is always sprung up in nucleation phenomena. The two main categories of nucleation are homogeneous nucleation, where the new phase is formed in a uniform substance, and heterogeneous nucleation, when nucleation occurs on a pre-existing surface. In this thesis the main attention is paid on heterogeneous nucleation. This thesis wields the nucleation phenomena from two theoretical perspectives: the classical nucleation theory and the statistical mechanical approach. The formulation of the classical nucleation theory relies on equilibrium thermodynamics and use of macroscopically determined quantities to describe the properties of small nuclei, sometimes consisting of just a few molecules. The statistical mechanical approach is based on interactions between single molecules, and does not bear the same assumptions as the classical theory. This work gathers up the present theoretical knowledge of heterogeneous nucleation and utilizes it in computational model studies. A new exact molecular approach on heterogeneous nucleation was introduced and tested by Monte Carlo simulations. The results obtained from the molecular simulations were interpreted by means of the concepts of the classical nucleation theory. Numerical calculations were carried out for a variety of substances nucleating on different substances. The classical theory of heterogeneous nucleation was employed in calculations of one-component nucleation of water on newsprint paper, Teflon and cellulose film, and binary nucleation of water-n-propanol and water-sulphuric acid mixtures on silver nanoparticles. The results were compared with experimental results. The molecular simulation studies involved homogeneous nucleation of argon and heterogeneous nucleation of argon on a planar platinum surface. It was found out that the use of a microscopical contact angle as a fitting parameter in calculations based on the classical theory of heterogeneous nucleation leads to a fair agreement between the theoretical predictions and experimental results. In the presented cases the microscopical angle was found to be always smaller than the contact angle obtained from macroscopical measurements. Furthermore, molecular Monte Carlo simulations revealed that the concept of the geometrical contact parameter in heterogeneous nucleation calculations can work surprisingly well even for very small clusters.
Resumo:
The purpose of this study is to investigate the accounting choice decisions of banks to employ Level 3 inputs in estimating the value of their financial assets and liabilities. Using a sample of 146 bank-year observations from 18 countries over 2009-2012, this study finds banks’ incentives to use Level 3 valuation inputs are associated with both firm-level and country-level determinants. At the firm-level, leverage, profitability (in term of net income), Tier 1 capital ratio, size and audit committee independence are associated with the percentage of Level 3 valuation inputs. At the country-level, economy development, legal region, legal enforcement and investor rights are also associated with the Level 3 classification choice. Lastly, ‘secrecy’, the proxy for culture dimensions and values, is found to be positively associated with the use of Level 3 valuation inputs. Altogether, these findings suggest that banks use the discretion available under Level 3 inputs opportunistically to avoid violating debt covenants limits, to increase earnings and manage their capital ratios. Results of this study also highlight that corporate governance quality at the firm-level (e.g. audit committee independence) and institutional features can constrain banks’ opportunistic behaviors in using the discretion available under Level 3 inputs. The results of this study have important implications for standard setters and contribute to the debate on the use of fair value accounting in an international context.
Resumo:
The purpose of this study is to investigate the accounting choice decisions of banks to employ Level 3 inputs in estimating the value of their financial assets and liabilities. Using a sample of 146 bank-year observations from 18 countries over 2009-2012, this study finds banks’ incentives to use Level 3 valuation inputs are associated with both firm-level and country-level determinants. At the firm-level, leverage, profitability (in term of net income), Tier 1 capital ratio, size and audit committee independence are associated with the percentage of Level 3 valuation inputs. At the country-level, economy development, legal region, legal enforcement and investor rights are also associated with the Level 3 classification choice. Lastly, ‘secrecy’, the proxy for culture dimensions and values, is found to be positively associated with the use of Level 3 valuation inputs. Altogether, these findings suggest that banks use the discretion available under Level 3 inputs opportunistically to avoid violating debt covenants limits, to increase earnings and manage their capital ratios. Results of this study also highlight that corporate governance quality at the firm-level (e.g. audit committee independence) and institutional features can constrain banks’ opportunistic behaviors in using the discretion available under Level 3 inputs. The results of this study have important implications for standard setters and contribute to the debate on the use of fair value accounting in an international context.
Resumo:
We present three measurements of the top-quark mass in the lepton plus jets channel with approximately 1.9 fb-1 of integrated luminosity collected with the CDF II detector using quantities with minimal dependence on the jet energy scale. One measurement exploits the transverse decay length of b-tagged jets to determine a top-quark mass of 166.9+9.5-8.5 (stat) +/- 2.9 (syst) GeV/c2, and another the transverse momentum of electrons and muons from W-boson decays to determine a top-quark mass of 173.5+8.8-8.9 (stat) +/- 3.8 (syst) GeV/c2. These quantities are combined in a third, simultaneous mass measurement to determine a top-quark mass of 170.7 +/- 6.3 (stat) +/- 2.6 (syst) GeV/c2.
Resumo:
Lignin was graft copolymerized with methyl methacrylate using manganic pyrophosphate as initiator. This modified lignin was then blended (up to 50 wt%) with low density polyethylene (LDPE) using a small quantity of poly[ethylene-co-(glycidyl methacrylate)] (PEGMA) compatibilizer. The mechanical properties of the blend were substantially improved by using modified lignin in contrast to untreated lignin. Differential scanning calorimetry studies showed loss of crystallinity of the LDPE phase owing to the interaction between the blend components. Thermogravimetric analysis showed higher thermal stability of modified lignin in the domain of blend processing. This suggested that there is scope for useful utilization of lignin, which could also lead to the development of eco-friendly products. (c) 2005 Society of Chemical Industry.