1000 resultados para Geometria. Aritmética. Educação matemática. Multiculturalismo.


Relevância:

50.00% 50.00%

Publicador:

Resumo:

O presente trabalho realiza um estudo referente à Geometria Tridimensional, no que tange a sua metodologia apresentada nos livros didáticos de Matemática. Esse instrumento tem passado por um processo de avaliação mais rigoroso nas últimas décadas pelos órgãos governamentais para a promoção do livro com qualidade o que é importante, porém uma análise crítica de seus conteúdos é essencial para que esse instrumento torne-se adequado a cada realidade e um aliado no planejamento do educador no processo de ensino e aprendizagem da Geometria. Essa disciplina é considerada por vários autores e especialista da educação como um conhecimento muito pertinente para a formação integral do aluno, ao proporcionar o desenvolvimento do raciocínio visual, espacial e lógico, abrangendo também a formação cultural e profissional. Nesse sentido, considerando a importância da escolha de um livro adequado e coerente para a qualidade desse ensino, objetivouse com esse estudo realizar uma análise e reflexão sobre os conteúdos da Geometria Tridimensional apresentada em dois livros didáticos de matemática do 5º ano do ensino fundamental submetidos aos critérios eliminatórios do Programa Nacional do Livro Didático - PNLD (2013) e aprovado pelo Ministério da Educação. Mediante levantamento bibliográfico da literatura pertinente e análise de documentos oficiais foi possível verificar que os mesmos apresentaram progressos em alguns aspectos atendendo de forma parcial as propostas atuais para esse ensino demonstrando que ainda precisam evoluir

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

O presente relatório referente ao Mestrado em Educação Pré-Escolar e Ensino do 1.º Ciclo do Ensino Básico, encontra-se dividido em duas partes. A primeira parte do relatório diz respeito à dimensão reflexiva onde são apresentados aspetos referentes às práticas pedagógicas desenvolvidas ao longo do mestrado. Em primeiro lugar surgem as reflexões críticas e fundamentadas referentes à educação pré-escolar e em segundo lugar surgem as reflexões referentes ao 1.º CEB. Ambas referem as experiências vivenciadas e as aprendizagens feitas ao longo de toda a prática. A dimensão investigativa foi realizada no contexto do 1.º CEB com crianças do 2.º ano de escolaridade. Esta investigação centra-se num estudo onde o objetivo era perceber como se pode integrar a Música e a Matemática para consolidar aprendizagens matemáticas numa turma de 2.º ano do 1.º CEB. Participaram neste estudo vinte e um alunos de uma escola pública pertencente ao concelho de Leiria. Para a realização do estudo foram desenvolvidas duas sequências didáticas. A 1.ª sequência divide-se em: observação e análise de padrões geométricos; criação de uma sequência geométrica no quadro em grande grupo; associação de um som a cada uma das diferentes figuras geométricas utilizadas na sequência criada. A 2.ª sequência divide-se em: criação e apresentação de sequências geométricas e sonoras em grupos de 5 elementos; identificação de uma sequência geométrica através de uma sequência sonora; identificação de uma sequência geométrica através da escuta de uma obra musical. Os alunos estabeleceram relações entre as duas áreas, adquirindo aprendizagens proporcionadas pelas sequências pedagógicas

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the effects of the globalized world is a strong tendency to eliminate differences, promoting a planetary culture. Education systems are particularly affected, undergoing strong pressure from international studies and evaluations, inevitably comparative, and sadly competitive. As a result, one observes the gradual elimination of cultural components in the definition of education systems. The constitution of new social imaginaries becomes clear; imaginaries empty of historical, geographical and temporal referents, characterized by a strong presence of the culture of the image. The criteria of classification establish an inappropriate reference that has as its consequence the definition of practices and even of education systems. On the other hand, resistance mechanisms, often unconscious, are activated seeking to safeguard and recover the identifying features of a culture, such as its traditions, cuisine, languages, artistic manifestations in general, and, in doing so, to contribute to cultural diversity, an essential factor to encourage creativity. In this article, the sociocultural basis of mathematics and of its teaching are examined, and also the consequences of globalization and its effects on multicultural education. The concept of culture is discussed, as well as issues related to culture dynamics, resulting in the proposition of a theory of transdisciplinar and transcultural knowledge. Upon such basis the Ethnomathematics Program is presented. A critique is also made of the curriculum presently used, which is in its conception and detailing, obsolete, uninteresting and of little use. A different concept of curriculum is proposed, based on the communicative (literacy), analytical (matheracy), and material (technoracy) instruments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Com este estudo pretendo perceber qual o contributo das histórias com matemática no envolvimento dos alunos em tarefas de geometria e o papel das representações no desenvolvimento dos seus raciocínios, bem como perceber que aspectos relativos ao sentido espacial e ideias geométricas surgem. Para aprofundar e contextualizar o problema defini as seguintes questões de investigação: 1. Que relação estabelecem e que tipo de representações utilizam os alunos em tarefas matemáticas criadas a partir de contextos de histórias com matemática? 2. Como evoluem as representações matemáticas dos alunos, ao longo da resolução das diferentes sequências de tarefas apresentadas? 3. Que aspectos relativos ao sentido espacial e outras ideias geométricas surgem, ao longo da resolução das diferentes tarefas? O trabalho apresentado foi desenvolvido numa turma de 3ºano de escolaridade que tem vindo a desenvolver o sentido espacial e a construir ideias geométricas, com base na experimentação e interacção. Para um acompanhamento mais consistente, focou-se a atenção num grupo de quatro alunos com quem se interagiu de forma mais persistente e do qual foram analisados os registos escritos. Contudo, também foram elementos de análise as respostas surgidas após a discussão em grande grupo, dado que a interacção nesta turma gerou, de forma muito consistente, a compreensão e articulação dos conceitos abordados. Para o desenvolvimento deste estudo optou-se por uma metodologia de investigação de natureza qualitativa, tendo em conta que a principal agente de recolha de dados foi a investigadora e que a mesma foi feita no ambiente natural dos alunos. Para além disso, é ainda importante salientar que os documentos de análise são constituídos por produções dos alunos, onde interessou mais o processo que os resultados. A recolha de dados ocorreu ao longo de dezassete sessões em sala de aula, tendo as mesmas sido dinamizadas, inicialmente, com maior incidência, por mim e depois, em estreita colaboração com o professor da turma. As três sequências de tarefas apresentadas aos alunos foram construídas por mim e procuraram incidir, fundamentalmente no desenvolvimento do sentido espacial dos alunos, designadamente em ideias geométricas que se relacionam com a Reflexão, os Eixos de simetria de figuras e a Projecção de sombras, vista como uma reflexão provocada pela incidência de luz contra um corpo. Estas serviram para desenvolver ou aprofundar os conceitos referidos e, ii também, perceber como a sombra se forma e transforma, de acordo com a posição ou incidência de maior ou menor quantidade de luz. Para a construção das três sequências de tarefas realizadas pelos alunos utilizaram-se três histórias com matemática: Grejniec (2002), Magalhães (2008) e Torrado (2005). As sequências de tarefas apresentadas bem como os conceitos nelas abordados surgiram a partir de modelos matemáticos apresentados nos livros escolhidos para desenvolver este trabalho. Em A que Sabe a Lua? e o O Rapaz do Espelho, os modelos matemáticos estão presentes tanto na narrativa como na ilustração, o mesmo não acontece em O Homem sem Sombra, onde o modelo matemático é apenas desenvolvido no texto. Os resultados deste trabalho levantam novas questões susceptíveis de outras pesquisas. Interessa saber, num estudo mais alargado, de que modo é que o método de ensino utilizado e o papel do professor, enquanto mediador no processo de ensino-aprendizagem, influenciam a construção e articulação de conceitos ligados ao desenvolvimento do sentido espacial e construção de ideias geométricas e, também, a aspectos ligados com as expectativas dos alunos, relativamente à aprendizagem dos tópicos da área da Matemática, no 1º Ciclo do Ensino Básico.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tese de Doutoramento, Ciências Económicas e Empresariais (Desenvolvimento Económico e Social e Economia Pública), 16 de Janeiro de 2014, Universidade dos Açores.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Este artigo teve como ponto de partida o parecer que o Domínio de Matemática da Escola Superior de Educação de Lisboa elaborou na fase de discussão pública da proposta de Programa de Matemática do Ensino Básico. Corresponde a uma análise que, não podendo ser exaustiva, procura tocar os vários temas matemáticos e outros aspetos curriculares que consideramos relevantes. Da leitura conjunta da proposta de Programa, Metas Curriculares e Cadernos de Apoio, resultam conclusões que na nossa perspetiva são preocupantes e que quisemos partilhar com outros colegas, o que justifi ca a publicação deste texto.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mestrado (PES II), Educação Pré-Escolar e Ensino do 1.º Ciclo do Ensino Básico, 17 de Junho de 2015, Universidade dos Açores.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mestrado (PES II), Educação Pré-Escolar e Ensino do 1.º Ciclo do Ensino Básico, 22 de Junho de 2015, Universidade dos Açores.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Este estudo quantitativo tem como objetivo avaliar o desenvolvimento do conhecimento de geometria de mais de duas centenas de estudantes do ensino superior a frequentar o curso de Educação Básica em três ESE. Através de um teste com 21 questões, passado antes e após a formação em Geometria, avaliaram-se os estudantes num conjunto de categorias. Os resultados revelam que, embora os estudantes manifestem conhecimentos de conceitos elementares à partida, com percentagens em torno dos 70%, e evolução nas três escolas, com aumentos médios de 5%, revelam, ainda, aspetos críticos relativos a conceitos básicos contemplados no teste.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação de mestrado em Ciências da Educação: área de Educação e Desenvolvimento

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Ensino da Matemática

Relevância:

40.00% 40.00%

Publicador:

Resumo:

O presente estudo foi desenvolvido no âmbito do Mestrado de Didática da Matemática e Ciências da Natureza, no 1.º e 2.º Ciclos, no domínio da Geometria. Tem como principal objetivo compreender e analisar, através da implementação de uma sequência de tarefas de investigação e exploração, de que forma o processo de ensino e aprendizagem dos alunos, na área dos quadriláteros, com os recursos GeoGebra e o Geoplano, contribui para o desenvolvimento do raciocínio geométrico. Neste sentido, definiram-se as seguintes questões de investigação: (1) Qual a imagem concetual que os alunos possuem de cada um dos quadriláteros? (2) Que conhecimentos têm os alunos sobre as propriedades dos quadriláteros: quadrados, retângulos e losangos? (3) Quais os contributos do Geoplano e do GeoGebra na compreensão e identificação das propriedades dos quadriláteros? A metodologia adotada foi de natureza qualitativa, do tipo interpretativo, baseada em dois estudos de caso. Na recolha de dados, foram utilizados os seguintes instrumentos: observação, questionário, documentos produzidos pelos alunos, entrevistas informais, registos áudio e fotografias aos trabalhos realizados. Na análise dos dados, procurou-se descrever e interpretar os dados recolhidos, no âmbito do objeto do estudo. Os resultados mostraram que a sequência de tarefas e o modo como foram desenvolvidas foram fundamentais na compreensão dos conteúdos trabalhados. Regista-se também que os recursos utilizados motivaram os alunos e contribuíram para a interação, como também para a compreensão dos conceitos geométricos. Por outro lado, a utilização do GeoGebra e do Geoplano contribuíram para o desenvolvimento do raciocínio espacial e geométrico.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Este estudo tem por objectivo compreender a perspectiva de professores sobre o currículo de Matemática do 1º ciclo do Ensino Secundário cabo-verdiano e conhecer necessidades de formação que identificam, para um melhor desempenho na sua actividade profissional. As questões de estudo são: 1) Como se revêem os professores de Matemática no currículo do 1º ciclo do Ensino Secundário, enquanto agentes que interpretam e implementam esse currículo? 2) Que potencialidades e dificuldades reconhecem nesse currículo? 3) Que áreas consideram haver necessidade de formação, para a melhoria da sua prática docente, nesse nível de ensino? O desenvolvimento do referencial teórico integra duas áreas temáticas como eixos centrais: o currículo, o professor e o professor de Matemática. Foi feita uma análise de normativos cabo-verdianos para a educação, entre os quais se destacam a Lei de Bases do Sistema Educativo, o Plano de estudos para o ensino secundário e o Programa de Matemática do 1º ciclo do Ensino Secundário. A metodologia adoptada na investigação segue uma abordagem interpretativa e descritiva, suportada por um design de estudo de caso. São estudados três casos, relativos a professores de Matemática cabo-verdianos do 1º ciclo do Ensino Secundário. A recolha de dados recorre a uma entrevista semi-estruturada a cada professor, à observação de três aulas por professor participante e à recolha documental. A análise de dados foi feita utilizando principalmente a técnica de análise de conteúdos. Os professores revêem-se como executores de um currículo uniforme, de cumprimento obrigatório, normativo, emanado centralmente e do qual procuram interpretar as intenções. A sua visão de currículo é centrada nos conteúdos do programa, um dos motivos para que o enquadramento ao nível do meios institucionais e as competências esperadas ao nível do saber fazer e ao nível do saber ser nem sempre serem conhecidas e/ou cumpridas. Em acção, revêem-se como figuras centrais do currículo. Todos se revêem com mais competência na implementação curricular à medida que vão adquirindo experiência profissional. Concordam com os temas do programa e um deles sugere a inclusão de um tema. Consideram que os conteúdos nem sempre estão bem organizados e mostram a necessidade de a metodologia do programa ser mais detalhada, evidenciando claramente os seus propósitos. Eventualmente, podem não concordar com a estrutura de currículo em espiral do programa. Os professores identificam mais formação com melhor desempenho. As necessidades de formação são: Metodologia do Ensino da Matemática, Resolução de Problemas, Avaliação e a Geometria ligada à utilização de materiais pedagógicos. O estudo parece indicar que os professores não desenvolvem práticas diferentes por não terem essa vivência e aponta os professores mais jovens como mais abertos à mudança.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

No passado, a Matemática esteve, em grande parte, preocupada com conjuntos e funções que podem ser estudados através dos métodos clássicos de cálculo1. Por exemplo, na geometria, Havia o hábito de descrever os objectos através de formas regulares: rectas, circunferências, cones etc. Mas, será que uma nuvem é formada por esferas, uma montanha por cones e continentes por circunferências? Existem alguns objectos na natureza, nas ciências em geral e na matemática, em particular (conjuntos, funções), que não são suficientemente "lisos" e que tendiam a ser ignorados e rotulados como “patológicos” . Tais objectos foram considerados como curiosidades, e assim, estudados e analisados por alguns investigadores ao longo dos tempos. Porém, em 1960, Benoit B. Mandelbrot2, trouxe essa matéria à agenda matemática da actualidade, apresentando uma fundamentação coerente do que seriam essas "não-formas". Refazendo alguns estudos nessa área e conhecendo ideias de outros autores apresentou estudos sobre fractais criando assim a teoria dos fractais ou a geometria fractal. Os fractais caracterizam-se por terem uma aparência complexa e confusa, em certos casos, mas quando olhados matematicamente, sua análise denota figuras que apresentam regularidades e comportamentos curiosos, como o de se assemelharem a elas mesmas quando observadas a diferentes escalas, por exemplo. A geometria fractal é portanto o ramo da Matemática que estuda as propriedades dos fractais. Descreve muitas situações que não podem ser explicadas facilmente pela Geometria Euclidiana. A geometria fractal descreve taambém como os fractais podem ser aplicados na ciência, tecnologia, arte, etc., sobretudo com recurso computadores. A geometria fractal ainda não fez a sua entrada nos programas dematemática no sistema educativo cabo-verdiano, sendo portanto, pouco conhecida nesse meio. Assim escolhemos essa geometria como tema do nosso trabalho, cujo objectivo geral é divulgar o mundo dos fractais e as suas aplicações, na educação. Aprofundar os conhecimentos sobre a geometria fractal e suas aplicações práticas e no ensino, integrar os conhecimentos de Álgebra Linear, Geometria e Topologia adquiridos no curso e aplicar os fractais ao estudo das sucessões (progressões geométricas) são os objectivos específicos. A partir destes objectivos surgiram as nossas questões de investigação, que tentamos responder ao longo do estudo: 1. Como se fundamenta a geometria fractal? 2. Quais são as principais aplicações? 3. Como aplicar os fractais no ensino secundário (sucessões), de modo a tornar o ensino de matemática mais interessante e motivador? Tais são as questões para as quais procuramos uma resposta ao longo do desenvolvimento do projecto.