905 resultados para GENERAL LINEAR SUPERGROUP
Resumo:
Papers include a large number of journals and notebooks, hundreds of fan letters, general correspondence, manuscripts by and about Roth, and publications by and about Roth. Papers also include various editions of his works and several annotated volumes of his personal reference library. Topical files contain photographs and items reflecting his interests and personal history.
Resumo:
In an earlier paper [1], it has been shown that velocity ratio, defined with reference to the analogous circuit, is a basic parameter in the complete analysis of a linear one-dimensional dynamical system. In this paper it is shown that the terms constituting velocity ratio can be readily determined by means of an algebraic algorithm developed from a heuristic study of the process of transfer matrix multiplication. The algorithm permits the set of most significant terms at a particular frequency of interest to be identified from a knowledge of the relative magnitudes of the impedances of the constituent elements of a proposed configuration. This feature makes the algorithm a potential tool in a first approach to a rational design of a complex dynamical filter. This algorithm is particularly suited for the desk analysis of a medium size system with lumped as well as distributed elements.
Resumo:
Contains Deed of Trust, By-Laws, Annual Reports, Corporation Minutes (1909, 1913-1919, 1923-1924, 1926-1933), Minutes of the Board of Trustees (1893, 1899, 1907, 1910, 1915-1916, 1918, 1923, 1926-1927, 1930-1933), and the minutes, correspondence, and reports of the various national and local committees. Financial materials include income and expenditure records (1891-1933), audits (1919-1923, 1926-1928), the records of agricultural loans and mortgages, bond and real estate holdings, and bequests. Includes also correspondence and other materials regarding the establishment of the Fund, correspondence of and other papers concerning the Baron and Baroness de Hirsch, and several histories of the Fund. Included in the wide range of activities are material on the work of the Agriculture Bureau and the Jewish Agriculture Society, Housing, English Classes, Immigration (including monthly reports for several ports of entry 1885-1916) and Immigrant Aid, German Refugee Aid in the early years of the Holocaust, Kings Park, N.Y. Test Farm, the Laundry Project, Peekskill Farm, Public Baths, Student Loans, the Baron de Hirsch Trade School, and the Woodbine Colony and Baron De Hirsch Agricultural & Industrial School. Contains also materials on the Colonization attempts made in Colorado, Connecticut, Florida, Louisiana, Michigan, Minnesota, North Dakota, New Jersey, New York, Pennsylvania, South Dakota, Galveston, Texas, The Southwest, Washington, Canada, and Mexico.
Resumo:
Congregation Beth Israel was founded in 1843 and is Connecticut's oldest synagogue. Originally established as an Orthodox congregation, the synagogue eventually converted to Reform and was one of the founding members of the Union of American Hebrew Congregations (Union for Reform Judaism) in 1877. This collection includes event flyers, programs for services, sermons, anniversary books with historical information, and bulletins. Box 1: General/Miscellaneous Materials 1927-1970. 100th Anniversary /Programs and Invitations 1943. 125th Anniversary/Program 1968. Publications/Bulletins 1920-1959. Box 2: Publications/ Bulletings 1950-1969. Box 3: Publications/ Bulletins 1960-1989. Box 4: Publications/ Bulletin 1989-1999.
Resumo:
We solve the Dynamic Ehrenfeucht-Fra\"iss\'e Game on linear orders for both players, yielding a normal form for quantifier-rank equivalence classes of linear orders in first-order logic, infinitary logic, and generalized-infinitary logics with linearly ordered clocks. We show that Scott Sentences can be manipulated quickly, classified into local information, and consistency can be decided effectively in the length of the Scott Sentence. We describe a finite set of linked automata moving continuously on a linear order. Running them on ordinals, we compute the ordinal truth predicate and compute truth in the constructible universe of set-theory. Among the corollaries are a study of semi-models as efficient database of both model-theoretic and formulaic information, and a new proof of the atomicity of the Boolean algebra of sentences consistent with the theory of linear order -- i.e., that the finitely axiomatized theories of linear order are dense.
Composition operators, Aleksandrov measures and value distribution of analytic maps in the unit disc
Resumo:
A composition operator is a linear operator that precomposes any given function with another function, which is held fixed and called the symbol of the composition operator. This dissertation studies such operators and questions related to their theory in the case when the functions to be composed are analytic in the unit disc of the complex plane. Thus the subject of the dissertation lies at the intersection of analytic function theory and operator theory. The work contains three research articles. The first article is concerned with the value distribution of analytic functions. In the literature there are two different conditions which characterize when a composition operator is compact on the Hardy spaces of the unit disc. One condition is in terms of the classical Nevanlinna counting function, defined inside the disc, and the other condition involves a family of certain measures called the Aleksandrov (or Clark) measures and supported on the boundary of the disc. The article explains the connection between these two approaches from a function-theoretic point of view. It is shown that the Aleksandrov measures can be interpreted as kinds of boundary limits of the Nevanlinna counting function as one approaches the boundary from within the disc. The other two articles investigate the compactness properties of the difference of two composition operators, which is beneficial for understanding the structure of the set of all composition operators. The second article considers this question on the Hardy and related spaces of the disc, and employs Aleksandrov measures as its main tool. The results obtained generalize those existing for the case of a single composition operator. However, there are some peculiarities which do not occur in the theory of a single operator. The third article studies the compactness of the difference operator on the Bloch and Lipschitz spaces, improving and extending results given in the previous literature. Moreover, in this connection one obtains a general result which characterizes the compactness and weak compactness of the difference of two weighted composition operators on certain weighted Hardy-type spaces.
Resumo:
This PhD Thesis is about certain infinite-dimensional Grassmannian manifolds that arise naturally in geometry, representation theory and mathematical physics. From the physics point of view one encounters these infinite-dimensional manifolds when trying to understand the second quantization of fermions. The many particle Hilbert space of the second quantized fermions is called the fermionic Fock space. A typical element of the fermionic Fock space can be thought to be a linear combination of the configurations m particles and n anti-particles . Geometrically the fermionic Fock space can be constructed as holomorphic sections of a certain (dual)determinant line bundle lying over the so called restricted Grassmannian manifold, which is a typical example of an infinite-dimensional Grassmannian manifold one encounters in QFT. The construction should be compared with its well-known finite-dimensional analogue, where one realizes an exterior power of a finite-dimensional vector space as the space of holomorphic sections of a determinant line bundle lying over a finite-dimensional Grassmannian manifold. The connection with infinite-dimensional representation theory stems from the fact that the restricted Grassmannian manifold is an infinite-dimensional homogeneous (Kähler) manifold, i.e. it is of the form G/H where G is a certain infinite-dimensional Lie group and H its subgroup. A central extension of G acts on the total space of the dual determinant line bundle and also on the space its holomorphic sections; thus G admits a (projective) representation on the fermionic Fock space. This construction also induces the so called basic representation for loop groups (of compact groups), which in turn are vitally important in string theory / conformal field theory. The Thesis consists of three chapters: the first chapter is an introduction to the backround material and the other two chapters are individually written research articles. The first article deals in a new way with the well-known question in Yang-Mills theory, when can one lift the action of the gauge transformation group on the space of connection one forms to the total space of the Fock bundle in a compatible way with the second quantized Dirac operator. In general there is an obstruction to this (called the Mickelsson-Faddeev anomaly) and various geometric interpretations for this anomaly, using such things as group extensions and bundle gerbes, have been given earlier. In this work we give a new geometric interpretation for the Faddeev-Mickelsson anomaly in terms of differentiable gerbes (certain sheaves of categories) and central extensions of Lie groupoids. The second research article deals with the question how to define a Dirac-like operator on the restricted Grassmannian manifold, which is an infinite-dimensional space and hence not in the landscape of standard Dirac operator theory. The construction relies heavily on infinite-dimensional representation theory and one of the most technically demanding challenges is to be able to introduce proper normal orderings for certain infinite sums of operators in such a way that all divergences will disappear and the infinite sum will make sense as a well-defined operator acting on a suitable Hilbert space of spinors. This research article was motivated by a more extensive ongoing project to construct twisted K-theory classes in Yang-Mills theory via a Dirac-like operator on the restricted Grassmannian manifold.
Resumo:
The stochastic filtering has been in general an estimation of indirectly observed states given observed data. This means that one is discussing conditional expected values as being one of the most accurate estimation, given the observations in the context of probability space. In my thesis, I have presented the theory of filtering using two different kind of observation process: the first one is a diffusion process which is discussed in the first chapter, while the third chapter introduces the latter which is a counting process. The majority of the fundamental results of the stochastic filtering is stated in form of interesting equations, such the unnormalized Zakai equation that leads to the Kushner-Stratonovich equation. The latter one which is known also by the normalized Zakai equation or equally by Fujisaki-Kallianpur-Kunita (FKK) equation, shows the divergence between the estimate using a diffusion process and a counting process. I have also introduced an example for the linear gaussian case, which is mainly the concept to build the so-called Kalman-Bucy filter. As the unnormalized and the normalized Zakai equations are in terms of the conditional distribution, a density of these distributions will be developed through these equations and stated by Kushner Theorem. However, Kushner Theorem has a form of a stochastic partial differential equation that needs to be verify in the sense of the existence and uniqueness of its solution, which is covered in the second chapter.
Resumo:
In this paper the method of ultraspherical polynomial approximation is applied to study the steady-state response in forced oscillations of a third-order non-linear system. The non-linear function is expanded in ultraspherical polynomials and the expansion is restricted to the linear term. The equation for the response curve is obtained by using the linearized equation and the results are presented graphically. The agreement between the approximate solution and the analog computer solution is satisfactory. The problem of stability is not dealt with in this paper.
Resumo:
We explore here the acceleration of convergence of iterative methods for the solution of a class of quasilinear and linear algebraic equations. The specific systems are the finite difference form of the Navier-Stokes equations and the energy equation for recirculating flows. The acceleration procedures considered are: the successive over relaxation scheme; several implicit methods; and a second-order procedure. A new implicit method—the alternating direction line iterative method—is proposed in this paper. The method combines the advantages of the line successive over relaxation and alternating direction implicit methods. The various methods are tested for their computational economy and accuracy on a typical recirculating flow situation. The numerical experiments show that the alternating direction line iterative method is the most economical method of solving the Navier-Stokes equations for all Reynolds numbers in the laminar regime. The usual ADI method is shown to be not so attractive for large Reynolds numbers because of the loss of diagonal dominance. This loss can however be restored by a suitable choice of the relaxation parameter, but at the cost of accuracy. The accuracy of the new procedure is comparable to that of the well-tested successive overrelaxation method and to the available results in the literature. The second-order procedure turns out to be the most efficient method for the solution of the linear energy equation.
Resumo:
For the non-linear bending of cantilever beams of variable cross-section, the effect of large deformations, but with linear elasticity, is considered. The governing integral equation is solved by a numerical iterative procedure. Results for some typical cases are obtained and compared with some of those available in the literature.
Resumo:
The decay of sound in a rectangular room is analyzed for various boundary conditions on one of its walls. It is shown that the decay of the sound-intensity level is in general nonlinear. But for specific areas and impedances of the material it is possible to obtain a linear initial decay. It is also shown that the coefficients derived from the initial decay rates neither correspond to the predictions of Sabine's or Eyring's geometrical theories nor to the normal coefficients of Morse's wave theory. The dependence of the coefficients on the area of the material is discussed. The influence of the real and the imaginary parts of the specific acoustic impedance of the material on the coefficients is also discussed. Finally, the existence of a linear initial decay corresponding to the decay of a diffuse field in the case of a highly absorbing material partially covering a wall is explained on the basis of modal coupling.
Resumo:
This paper presents a method of designing a minimax filter in the presence of large plant uncertainties and constraints on the mean squared values of the estimates. The minimax filtering problem is reformulated in the framework of a deterministic optimal control problem and the method of solution employed, invokes the matrix Minimum Principle. The constrained linear filter and its relation to singular control problems has been illustrated. For the class of problems considered here it is shown that the filter can he constrained separately after carrying out the mini maximization. Numorieal examples are presented to illustrate the results.
Resumo:
In this paper, we solve the distributed parameter fixed point smoothing problem by formulating it as an extended linear filtering problem and show that these results coincide with those obtained in the literature using the forward innovations method.
Resumo:
The metabolism of an organism consists of a network of biochemical reactions that transform small molecules, or metabolites, into others in order to produce energy and building blocks for essential macromolecules. The goal of metabolic flux analysis is to uncover the rates, or the fluxes, of those biochemical reactions. In a steady state, the sum of the fluxes that produce an internal metabolite is equal to the sum of the fluxes that consume the same molecule. Thus the steady state imposes linear balance constraints to the fluxes. In general, the balance constraints imposed by the steady state are not sufficient to uncover all the fluxes of a metabolic network. The fluxes through cycles and alternative pathways between the same source and target metabolites remain unknown. More information about the fluxes can be obtained from isotopic labelling experiments, where a cell population is fed with labelled nutrients, such as glucose that contains 13C atoms. Labels are then transferred by biochemical reactions to other metabolites. The relative abundances of different labelling patterns in internal metabolites depend on the fluxes of pathways producing them. Thus, the relative abundances of different labelling patterns contain information about the fluxes that cannot be uncovered from the balance constraints derived from the steady state. The field of research that estimates the fluxes utilizing the measured constraints to the relative abundances of different labelling patterns induced by 13C labelled nutrients is called 13C metabolic flux analysis. There exist two approaches of 13C metabolic flux analysis. In the optimization approach, a non-linear optimization task, where candidate fluxes are iteratively generated until they fit to the measured abundances of different labelling patterns, is constructed. In the direct approach, linear balance constraints given by the steady state are augmented with linear constraints derived from the abundances of different labelling patterns of metabolites. Thus, mathematically involved non-linear optimization methods that can get stuck to the local optima can be avoided. On the other hand, the direct approach may require more measurement data than the optimization approach to obtain the same flux information. Furthermore, the optimization framework can easily be applied regardless of the labelling measurement technology and with all network topologies. In this thesis we present a formal computational framework for direct 13C metabolic flux analysis. The aim of our study is to construct as many linear constraints to the fluxes from the 13C labelling measurements using only computational methods that avoid non-linear techniques and are independent from the type of measurement data, the labelling of external nutrients and the topology of the metabolic network. The presented framework is the first representative of the direct approach for 13C metabolic flux analysis that is free from restricting assumptions made about these parameters.In our framework, measurement data is first propagated from the measured metabolites to other metabolites. The propagation is facilitated by the flow analysis of metabolite fragments in the network. Then new linear constraints to the fluxes are derived from the propagated data by applying the techniques of linear algebra.Based on the results of the fragment flow analysis, we also present an experiment planning method that selects sets of metabolites whose relative abundances of different labelling patterns are most useful for 13C metabolic flux analysis. Furthermore, we give computational tools to process raw 13C labelling data produced by tandem mass spectrometry to a form suitable for 13C metabolic flux analysis.