903 resultados para Frequency domain model
Resumo:
A single plant cell was modeled with smoothed particle hydrodynamics (SPH) and a discrete element method (DEM) to study the basic micromechanics that govern the cellular structural deformations during drying. This two-dimensional particle-based model consists of two components: a cell fluid model and a cell wall model. The cell fluid was approximated to a highly viscous Newtonian fluid and modeled with SPH. The cell wall was treated as a stiff semi-permeable solid membrane with visco-elastic properties and modeled as a neo-Hookean solid material using a DEM. Compared to existing meshfree particle-based plant cell models, we have specifically introduced cell wall–fluid attraction forces and cell wall bending stiffness effects to address the critical shrinkage characteristics of the plant cells during drying. Also, a moisture domain-based novel approach was used to simulate drying mechanisms within the particle scheme. The model performance was found to be mainly influenced by the particle resolution, initial gap between the outermost fluid particles and wall particles and number of particles in the SPH influence domain. A higher order smoothing kernel was used with adaptive smoothing length to improve the stability and accuracy of the model. Cell deformations at different states of cell dryness were qualitatively and quantitatively compared with microscopic experimental findings on apple cells and a fairly good agreement was observed with some exceptions. The wall–fluid attraction forces and cell wall bending stiffness were found to be significantly improving the model predictions. A detailed sensitivity analysis was also done to further investigate the influence of wall–fluid attraction forces, cell wall bending stiffness, cell wall stiffness and the particle resolution. This novel meshfree based modeling approach is highly applicable for cellular level deformation studies of plant food materials during drying, which characterize large deformations.
Resumo:
In this age of ever-increasing information technology (IT) driven environments, governments/or public sector organisations (PSOs) are expected to demonstrate the business value of the investment in IT and take advantage of the opportunities offered by technological advancements. Strategic alignment (SA) emerged as a mechanism to bridge the gap between business and IT missions, objectives, and plans in order to ensure value optimisation from investment in IT and enhance organisational performance. However, achieving and sustaining SA remains a challenge requiring even more agility nowadays to keep up with turbulent organisational environments. The shared domain knowledge (SDK) between the IT department and other diverse organisational groups is considered as one of the factors influencing the successful implementation of SA. However, SDK in PSOs has received relatively little empirical attention. This paper presents findings from a study which investigated the influence of SDK on SA within organisations in the Australian public sector. The developed research model examined the relationship of SDK between business and IT domains with SA using a survey of 56 public sector professionals and executives. A key research contribution is the empirical demonstration that increasing levels of SDK between IT and business groups leads to increased SA.
Resumo:
This work deals with estimators for predicting when parametric roll resonance is going to occur in surface vessels. The roll angle of the vessel is modeled as a second-order linear oscillatory system with unknown parameters. Several algorithms are used to estimate the parameters and eigenvalues of the system based on data gathered experimentally on a 1:45 scale model of a tanker. Based on the estimated eigenvalues, the system predicts whether or not parametric roll occurred. A prediction accuracy of 100% is achieved for regular waves, and up to 87.5% for irregular waves.
Resumo:
There is strong current interest in the use of biodegradable scaffolds in combination with bone growth factors as a valuable alternative to the current gold standard autograft in spinal fusion surgery Yong et al. (2013). Here we report on 6- vs 12- month data set evaluating the longitudinal performance of a CaP coated polycaprolactone (PCL) scaffold loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within a preclinical ovine thoracic spine. The results of this study demonstrate the efficacy of scaffold-based delivery of rhBMP-2 in promoting higher fusion grades at 6- and 12- months in comparison to the scaffold alone or autograft group within the same time frame. Fusion grades achieved at six months using PCL+rhBMP-2 are not significantly increased at twelve months post surgery.
Resumo:
Many species of bat use ultrasonic frequency modulated (FM) pulses to measure the distance to objects by timing the emission and reception of each pulse. Echolocation is mainly used in flight. Since the flight speed of bats often exceeds 1% of the speed of sound, Doppler effects will lead to compression of the time between emission and reception as well as an elevation of the echo frequencies, resulting in a distortion of the perceived range. This paper describes the consequences of these Doppler effects on the ranging performance of bats using different pulse designs. The consequences of Doppler effects on ranging performance described in this paper assume bats to have a very accurate ranging resolution, which is feasible with a filterbank receiver. By modeling two receiver types, it was first established that the effects of Doppler compression are virtually independent of the receiver type. Then, used a cross-correlation model was used to investigate the effect of flight speed on Doppler tolerance and range–Doppler coupling separately. This paper further shows how pulse duration, bandwidth, function type, and harmonics influence Doppler tolerance and range–Doppler coupling. The influence of each signal parameter is illustrated using calls of several bat species. It is argued that range–Doppler coupling is a significant source of error in bat echolocation, and various strategies bats could employ to deal with this problem, including the use of range rate information are discussed.
Resumo:
Large-scale integration of non-inertial generators such as wind farms will create frequency stability issues due to reduced system inertia. Inertia based frequency stability study is important to predict the performance of power system with increased level of renewables. This paper focuses on the impact large-scale wind penetration on frequency stability of the Australian Power Network. MATLAB simulink is used to develop a frequency based dynamic model utilizing the network data from a simplified 14-generator Australian power system. The loss of generation is modeled as the active power disturbance and minimum inertia required to maintain the frequency stability is determined for five-area power system.
Resumo:
Soils at many locations that have their origin in volcanic parent material and have undergone extensive weathering often exhibit strong frequency-dependent magnetic susceptibilities. The presence of such susceptibility has a profound effect on electromagnetic induction data acquired in such environments. Their transient electromagnetic response is characterized by a t-1 decay that is strong enough to mask UXO responses. In a field study and associated laboratory work on characterizing the frequency-dependent magnetic susceptibility and its influence on transient electromagnetic data, we collected soil samples on the surface and in soil pits from the Island of Kaho'olawe, Hawaii, and measured their frequency dependent magnetic susceptibilities. We present the details of the field investigation, confirm previous theoretical work with field and laboratory measurements, characterize the susceptibility with a Cole-Cole model, and investigate the response specific to the measured susceptibility.
Resumo:
Background The benign reputation of Plasmodium vivax is at odds with the burden and severity of the disease. This reputation, combined with restricted in vitro techniques, has slowed efforts to gain an understanding of the parasite biology and interaction with its human host. Methods A simulation model of the within-host dynamics of P. vivax infection is described, incorporating distinctive characteristics of the parasite such as the preferential invasion of reticulocytes and hypnozoite production. The developed model is fitted using digitized time-series’ from historic neurosyphilis studies, and subsequently validated against summary statistics from a larger study of the same population. The Chesson relapse pattern was used to demonstrate the impact of released hypnozoites. Results The typical pattern for dynamics of the parasite population is a rapid exponential increase in the first 10 days, followed by a gradual decline. Gametocyte counts follow a similar trend, but are approximately two orders of magnitude lower. The model predicts that, on average, an infected naïve host in the absence of treatment becomes infectious 7.9 days post patency and is infectious for a mean of 34.4 days. In the absence of treatment, the effect of hypnozoite release was not apparent as newly released parasites were obscured by the existing infection. Conclusions The results from the model provides useful insights into the dynamics of P. vivax infection in human hosts, in particular the timing of host infectiousness and the role of the hypnozoite in perpetuating infection.
Resumo:
Many species of bat use ultrasonic frequency modulated (FM) pulses to measure the distance to objects by timing the emission and reception of each pulse. Echolocation is mainly used in flight. Since the flight speed of bats often exceeds 1% of the speed of sound,Doppler effects will lead to compression of the time between emission and reception as well as an elevation of the echo frequencies, resulting in a distortion of the perceived range. This paper describes the consequences of these Doppler effects on the ranging performance of bats using different pulse designs. The consequences of Doppler effects on ranging performance described in this paper assume bats to have a very accurate ranging resolution, which is feasible with a filterbank receiver. By modeling two receiver types, it was first established that the effects of Doppler compression are virtually independent of the receiver type. Then, used a cross-correlation model was used to investigate the effect of flight speed on Doppler tolerance and range–Doppler coupling separately. This paper further shows how pulse duration, bandwidth, function type, and harmonics influence Doppler tolerance and range–Doppler coupling. The influence of each signal parameter is illustrated using calls of several bat species. It is argued that range–Doppler coupling is a significant source of error in bat echolocation, and various strategies bats could employ to deal with this problem, including the use of range rate information are discussed.
Resumo:
Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging|allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.
Resumo:
Recent changes in the aviation industry and in the expectations of travellers have begun to alter the way we approach our understanding, and thus the segmentation, of airport passengers. The key to successful segmentation of any population lies in the selection of the criteria on which the partitions are based. Increasingly, the basic criteria used to segment passengers (purpose of trip and frequency of travel) no longer provide adequate insights into the passenger experience. In this paper, we propose a new model for passenger segmentation based on the passenger core value, time. The results are based on qualitative research conducted in-situ at Brisbane International Terminal during 2012-2013. Based on our research, a relationship between time sensitivity and degree of passenger engagement was identified. This relationship was used as the basis for a new passenger segmentation model, namely: Airport Enthusiast (engaged, non time sensitive); Time Filler (non engaged, non time sensitive); Efficiency Lover (non engaged, time sensitive) and Efficient Enthusiast (engaged, time sensitive). The outcomes of this research extend the theoretical knowledge about passenger experience in the terminal environment. These new insights can ultimately be used to optimise the allocation of space for future terminal planning and design.
Resumo:
Acid hydrolysis is a popular pretreatment for removing hemicellulose from lignocelluloses in order to produce a digestible substrate for enzymatic saccharification. In this work, a novel model for the dilute acid hydrolysis of hemicellulose within sugarcane bagasse is presented and calibrated against experimental oligomer profiles. The efficacy of mathematical models as hydrolysis yield predictors and as vehicles for investigating the mechanisms of acid hydrolysis is also examined. Experimental xylose, oligomer (degree of polymerisation 2 to 6) and furfural yield profiles were obtained for bagasse under dilute acid hydrolysis conditions at temperatures ranging from 110C to 170C. Population balance kinetics, diffusion and porosity evolution were incorporated into a mathematical model of the acid hydrolysis of sugarcane bagasse. This model was able to produce a good fit to experimental xylose yield data with only three unknown kinetic parameters ka, kb and kd. However, fitting this same model to an expanded data set of oligomeric and furfural yield profiles did not successfully reproduce the experimental results. It was found that a ``hard-to-hydrolyse'' parameter, $\alpha$, was required in the model to ensure reproducibility of the experimental oligomer profiles at 110C, 125C and 140C. The parameters obtained through the fitting exercises at lower temperatures were able to be used to predict the oligomer profiles at 155C and 170C with promising results. The interpretation of kinetic parameters obtained by fitting a model to only a single set of data may be ambiguous. Although these parameters may correctly reproduce the data, they may not be indicative of the actual rate parameters, unless some care has been taken to ensure that the model describes the true mechanisms of acid hydrolysis. It is possible to challenge the robustness of the model by expanding the experimental data set and hence limiting the parameter space for the fitting parameters. The novel combination of ``hard-to-hydrolyse'' and population balance dynamics in the model presented here appears to stand up to such rigorous fitting constraints.
Resumo:
We develop a hybrid cellular automata model to describe the effect of the immune system and chemokines on a growing tumor. The hybrid cellular automata model consists of partial differential equations to model chemokine concentrations, and discrete cellular automata to model cell–cell interactions and changes. The computational implementation overlays these two components on the same spatial region. We present representative simulations of the model and show that increasing the number of immature dendritic cells (DCs) in the domain causes a decrease in the number of tumor cells. This result strongly supports the hypothesis that DCs can be used as a cancer treatment. Furthermore, we also use the hybrid cellular automata model to investigate the growth of a tumor in a number of computational “cancer patients.” Using these virtual patients, the model can explain that increasing the number of DCs in the domain causes longer “survival.” Not surprisingly, the model also reflects the fact that the parameter related to tumor division rate plays an important role in tumor metastasis.
Resumo:
This research examines the important emerging area of online customer experience (OCE) using data collected from an online survey of frequent and infrequent online shoppers. The study examines a model of antecedents for cognitive and affective experiential states and their influence on outcomes, such as online shopping satisfaction and repurchase intentions. The model also examines the relationships between perceived risk, trust, satisfaction and repurchase intentions. Theoretically, the study provides a broader understanding of OCE, through insights into two shopper segments identified as being important in e-retailing. For managers, the study highlights areas of OCE and their implications for ongoing management of the online channel.