997 resultados para Distributional Patterns
Resumo:
In this study we investigate the coordination between rhythmic flexion-extension (FE) and supination-pronation (SP) movements at the elbow joint-complex, while manipulating the intersegmental dynamics by means of a 2-degrees of freedom (df) robot arm. We hypothesized that constraints imposed by the structure of the neuromuscular-skeletal system would (1) result in predominant pattern(s) of coordination in the absence of interaction torques and (2) influence the capabilities of participants to exploit artificially induced interaction torques. Two experiments were conducted in which different conditions of interaction torques were applied on the SP-axis as a function of FE movements. These conditions promoted different patterns of coordination between the 2-df. Control trials conducted in the absence of interaction torques revealed that both the in-phase (supination synchronized with flexion) and the anti-phase (pronation synchronized with flexion) patterns were spontaneously established by participants. The predominance of these patterns of coordination is explained in terms of the mechanical action of bi-articular muscles acting at the elbow joint-complex, and in terms of the reflexes that link the activity of the muscles involved. Results obtained in the different conditions of interaction torques revealed that those neuromuscular-skeletal constraints either impede or favor the exploitation of intersegmental dynamics depending on the context. Interaction torques were indeed found to be exploited to a greater extent in conditions in which the profiles of interaction torques favored one of the two predominant patterns of coordination (i.e., in-phase or anti-phase) as opposed to other patterns of coordination (e.g., 90 degrees or 270 degrees). Those results are discussed in relation to recent studies reporting exploitation of interaction torques in the context of rhythmic movements.
Resumo:
The authors tested for predominant patterns of coordination in the combination of rhythmic flexion-extension (FE) and supination-pronation (SP) at the elbow-joint complex. Participants (N = 10) spontaneously established in-phase (supination synchronized with flexion) and antiphase (pronation synchronized with flexion) patterns. In addition, the authors used a motorized robot arm to generate involuntary SP movements with different phase relations with respect to voluntary FE. The involuntarily induced in-phase pattern was accentuated and was more consistent than other patterns. That result provides evidence that the predominance of the in-phase pattern originates in the influence of neuro-muscular-skeletal constraints rather than in a preference dictated by perceptual-cognitive factors implicated in voluntary control. Neuromuscular-skeletal constraints involved in the predominance of the in-phase and the antiphase patterns are discussed.
Resumo:
We investigated how the relative direction of limb movements in external space (iso- and non-isodirectionality), muscular constraints (the relative timing of homologous muscle activation) and the egocentric frame of reference (moving simultaneously toward/away the longitudinal axis of the body) contribute to the stability of coordinated movements. In the first experiment, we attempted to determine the respective stability of isodirectional and non-isodirectional movements in between-persons coordination. In a second experiment, we determined the effect of the relative direction in external space, and of muscular constraints, on pattern stability during a within-person bimanual coordination task. In the third experiment we dissociated the effects on pattern stability of the muscular constraints, relative direction and egocentric frame of reference. The results showed that (1) simultaneous activation of homologous muscles resulted in more stable performance than simultaneous activation of non-homologous muscles during within-subject coordination, and that (2) isodirectional movements were more stable than non-isodirectional movements during between-persons coordination, confirming the role of the relative direction of the moving limbs in the stability of bimanual coordination. Moreover, the egocentric constraint was to some extent found distinguishable from the effect of the relative direction of the moving limbs in external space, and from the effect of the relative timing of muscle activation. In summary, the present study showed that relative direction of the moving limbs in external space and muscular constraints may interact either to stabilize or destabilize coordination patterns. (C) 2003 Published by Elsevier B.V.
Resumo:
The present paper provides a historical note on the evolution of the behavioral study of interlimb coordination and the reasons for its success as a field of investigation in the past decades. Whereas the original foundations for this field of science were laid down back in the seventies, it has steadily grown in the past decades and has attracted the attention of various scientific disciplines. A diversity of topics is currently being addressed and this is also expressed in the present contributions to the special issue. The main theme is centered on the brain basis of interlimb coordination. On the one hand, this pertains to the study of the control and learning of patterns of interlimb coordination in clinical groups. On the other hand, basic neural approaches are being merged together with behavioral approaches to reveal the neural basis of interlimb coordination. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The control of movement is predicated upon a system of constraints of musculoskeletal and neural origin. The focus of the present study was upon the manner in which such constraints are adapted or superseded during the acquisition of motor skill. Individuals participated in five experimental sessions, ill which they attempted to produce abduction-adduction movements of the index finger in time with an auditory metronome. During each trial, the metronome frequency was increased in eight steps from an individually determined base frequency. Electromyographic (EMC) activity was recorded from first dorsal interosseous (FDI), first volar interosseous (FVI), flexor digitorum superficialis (FDS), and extensor digitorum communis (EDC) muscles. The movements produced on the final day of acquisition more accurately matched the required profile, and exhibited greater spatial and temporal stability, than those generated during initial performance. Tn the early stages of skill acquisition, an alternating pattern of activation in FDI and FVI was maintained, even at the highest frequencies. Tn contrast, as the frequency of movement was increased, activity in FDS and EDC was either tonic or intermittent. As learning proceeded, alterations in recruitment patterns were expressed primarily in the extrinsic muscles (EDC and FDS). These changes took the form of increases in the postural role of these muscles, shifts to phasic patterns of activation, or selective disengagement of these muscles. These findings suggest that there is considerable flexibility in the composition of muscle synergies, which is exploited by individuals during the acquisition of coordination.
Resumo:
It is unclear how human immunodeficiency virus (HIV) type 1–specific immune responses in exposed seronegative (ESN) individuals differ from those in HIV-1–infected subjects. By use of overlapping peptides spanning Gag, Tat, Nef, Vif, Vpr, and Vpu, peripheral blood mononuclear cells from ESN individuals, their seropositive (SP) partners, and unexposed seronegative control subjects were screened for interferon-? production. Responses were more frequent (95.7% vs. 20%), of a higher magnitude (9-fold), and of wider breadth (median number of peptides recognized, 18 vs. 2.5) in SP than in ESN individuals. Peptides recognized by ESN individuals were less frequently recognized by their SP partners. SP subjects infrequently recognized peptides from Vif, and such responses were subdominant; among ESN individuals, this HIV-1 protein was most frequently recognized. Immunodominant peptides recognized by SP subjects tended to be from relatively conserved regions, whereas peptides recognized by ESN individuals were associated with slow disease progression.
Resumo:
BACKGROUND:
Researching psychotic disorders in unison rather than as separate diagnostic groups is widely advocated, but the viability of such an approach requires careful consideration from a neurocognitive perspective.
AIMS:
To describe cognition in people with bipolar disorder and schizophrenia and to examine how known causes of variability in individual's performance contribute to any observed diagnostic differences.
METHOD:
Neurocognitive functioning in people with bipolar disorder (n = 32), schizophrenia (n = 46) and healthy controls (n = 67) was compared using analysis of covariance on data from the Northern Ireland First Episode Psychosis Study.
RESULTS:
The bipolar disorder and schizophrenia groups were most impaired on tests of memory, executive functioning and language. The bipolar group performed significantly better on tests of response inhibition, verbal fluency and callosal functioning. Between-group differences could be explained by the greater proclivity of individuals with schizophrenia to experience global cognitive impairment and negative symptoms.
CONCLUSIONS:
Particular impairments are common to people with psychosis and may prove useful as endophenotypic markers. Considering the degree of individuals' global cognitive impairment is critical when attempting to understand patterns of selective impairment both within and between these diagnostic groups.
Resumo:
Some 10 years ago one of the authors embarked on a research study examining the potential for social workers to shift from a child protection to a child welfare practice orientation (Spratt, 2000; 2001; Spratt and Callan, 2004). The research reported here develops that work; examining how social workers respond to ‘child care problems’ (CCPs). The results indicate that Northern Irish Health and Social Services Trusts (equivalent to Local Authorities in England and Wales) have responded to social policy goals to balance the protection of a lesser number of children whilst meeting the welfare needs of the greater by reducing the number of referrals designated ‘child protection investigations’ (CPIs) and increasing the number of CCPs. Closer analysis reveals, however, that a filtering system has been developed by social workers to address perceived child protection risks within CCP cases. Paradoxically, this leads to early closure of the more concerning cases, with service provision largely confined to the least concerning. The authors argue that the ways in which social workers balance social policing and supportive functions in practice may indicate possible responses to an increase in referred families anticipated within Every Child Matters (Chief Secretary to the Treasury, 2003).
Resumo:
Synovial fluid is a potential source of novel biomarkers for many arthritic disorders involving joint inflammation, including juvenile idiopathic arthritis. We first compared the distinctive protein ‘fingerprints’ of local inflammation in synovial fluid with systemic profiles within matched plasma samples. The synovial fluid proteome at the time of joint inflammation was then evaluated across clinical subgroups to identify early disease associated proteins. We measured the synovial fluid and plasma proteomes using the two-dimensional fluorescence difference gel electrophoresis approach. Image analysis software was used to highlight the expression levels of joint and subgroup associated proteins across the study cohort (n = 32). A defined subset of 30 proteins had statistically significant differences (p < 0.05) between sample types such that synovial fluid could be differentiated from plasma. Furthermore distinctive synovial proteome expression patterns segregate patient subgroups. Protein expression patterns localized in the chronically inflamed joint therefore have the potential to identify patients more likely to suffer disease which will spread from a single joint to multiple joints. The proteins identified could act as criteria to prevent disease extension by more aggressive therapeutic intervention directed at an earlier stage than is currently possible.