911 resultados para DMS (Computer system)
Resumo:
We describe the hardwired implementation of algorithms for Monte Carlo simulations of a large class of spin models. We have implemented these algorithms as VHDL codes and we have mapped them onto a dedicated processor based on a large FPGA device. The measured performance on one such processor is comparable to O(100) carefully programmed high-end PCs: it turns out to be even better for some selected spin models. We describe here codes that we are currently executing on the IANUS massively parallel FPGA-based system.
Resumo:
This paper describes the first participation of IR-n system at Spoken Document Retrieval, focusing on the experiments we made before participation and showing the results we obtained. IR-n system is an Information Retrieval system based on passages and the recognition of sentences to define them. So, the main goal of this experiment is to adapt IR-n system to the spoken document structure by means of the utterance splitter and the overlapping passage technique allowing to match utterances and sentences.
Resumo:
The need to digitise music scores has led to the development of Optical Music Recognition (OMR) tools. Unfortunately, the performance of these systems is still far from providing acceptable results. This situation forces the user to be involved in the process due to the need of correcting the mistakes made during recognition. However, this correction is performed over the output of the system, so these interventions are not exploited to improve the performance of the recognition. This work sets the scenario in which human and machine interact to accurately complete the OMR task with the least possible effort for the user.
Resumo:
Nowadays, the use of RGB-D sensors have focused a lot of research in computer vision and robotics. These kinds of sensors, like Kinect, allow to obtain 3D data together with color information. However, their working range is limited to less than 10 meters, making them useless in some robotics applications, like outdoor mapping. In these environments, 3D lasers, working in ranges of 20-80 meters, are better. But 3D lasers do not usually provide color information. A simple 2D camera can be used to provide color information to the point cloud, but a calibration process between camera and laser must be done. In this paper we present a portable calibration system to calibrate any traditional camera with a 3D laser in order to assign color information to the 3D points obtained. Thus, we can use laser precision and simultaneously make use of color information. Unlike other techniques that make use of a three-dimensional body of known dimensions in the calibration process, this system is highly portable because it makes use of small catadioptrics that can be placed in a simple manner in the environment. We use our calibration system in a 3D mapping system, including Simultaneous Location and Mapping (SLAM), in order to get a 3D colored map which can be used in different tasks. We show that an additional problem arises: 2D cameras information is different when lighting conditions change. So when we merge 3D point clouds from two different views, several points in a given neighborhood could have different color information. A new method for color fusion is presented, obtaining correct colored maps. The system will be tested by applying it to 3D reconstruction.
Resumo:
Paper submitted to the 43rd International Symposium on Robotics (ISR2012), Taipei, Taiwan, Aug. 29-31, 2012.
Resumo:
The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.
Resumo:
In this work we study Forward Osmosis (FO) as an emerging desalination technology, and its capability to replace totally or partially Reverse Osmosis (RO) in order to reduce the great amount of energy required in the current desalination plants. For this purpose, we propose a superstructure that includes both membrane based desalination technologies, allowing the selection of only one of the technologies or a combination of both of them seeking for the optimal configuration of the network. The optimization problem is solved for a seawater desalination plant with a given fresh water production. The results obtained show that the optimal solution combines both desalination technologies to reduce not only the energy consumption but also the total cost of the desalination process in comparison with the same plant but operating only with RO.
Resumo:
There has been a significant increase in the incidence of musculoskeletal disorders (MSD) and the costs associated with these are predicted to increase as the popularity of computer use increases at home, school and work. Risk factors have been identified in the adult population but little is known about the risk factors for children and youth. Research has demonstrated that they are not immune to this risk and that they are self reporting the same pain as adults. The purpose of the study was to examine children’s postures while working at computer workstations under two conditions. One was at an ergonomically adjusted children’s workstation while the second was at an average adult workstation. A Polhemus Fastrak™ system was used to record the children’s postures and joint and segment angles were quantified. Results of the study showed that children reported more discomfort and effort at the adult workstation. Segment and joint angles showed significant differences through the upper limb at the adult workstation. Of significance was the strategy of shoulder abduction and flexion that the children used in order to place their hand on the mouse. Ulnar deviation was also greater at the adult workstation as was neck extension. All of these factors have been identified in the literature as increasing the risk for injury. A comparison of the children’s posture while playing at the children’s workstation verses the adult workstation, showed that the postural angles assumed by the children at an adult workstation exceeded the Occupational Safety and Health Association (OSHA) recommendations. Further investigation is needed to increase our knowledge of MSD in children as their potential for long term damage has yet to be determined.
Resumo:
As digital systems move away from traditional desktop setups, new interaction paradigms are emerging that better integrate with users’ realworld surroundings, and better support users’ individual needs. While promising, these modern interaction paradigms also present new challenges, such as a lack of paradigm-specific tools to systematically evaluate and fully understand their use. This dissertation tackles this issue by framing empirical studies of three novel digital systems in embodied cognition – an exciting new perspective in cognitive science where the body and its interactions with the physical world take a central role in human cognition. This is achieved by first, focusing the design of all these systems on a contemporary interaction paradigm that emphasizes physical interaction on tangible interaction, a contemporary interaction paradigm; and second, by comprehensively studying user performance in these systems through a set of novel performance metrics grounded on epistemic actions, a relatively well established and studied construct in the literature on embodied cognition. The first system presented in this dissertation is an augmented Four-in-a-row board game. Three different versions of the game were developed, based on three different interaction paradigms (tangible, touch and mouse), and a repeated measures study involving 36 participants measured the occurrence of three simple epistemic actions across these three interfaces. The results highlight the relevance of epistemic actions in such a task and suggest that the different interaction paradigms afford instantiation of these actions in different ways. Additionally, the tangible version of the system supports the most rapid execution of these actions, providing novel quantitative insights into the real benefits of tangible systems. The second system presented in this dissertation is a tangible tabletop scheduling application. Two studies with single and paired users provide several insights into the impact of epistemic actions on the user experience when these are performed outside of a system’s sensing boundaries. These insights are clustered by the form, size and location of ideal interface areas for such offline epistemic actions to occur, as well as how can physical tokens be designed to better support them. Finally, and based on the results obtained to this point, the last study presented in this dissertation directly addresses the lack of empirical tools to formally evaluate tangible interaction. It presents a video-coding framework grounded on a systematic literature review of 78 papers, and evaluates its value as metric through a 60 participant study performed across three different research laboratories. The results highlight the usefulness and power of epistemic actions as a performance metric for tangible systems. In sum, through the use of such novel metrics in each of the three studies presented, this dissertation provides a better understanding of the real impact and benefits of designing and developing systems that feature tangible interaction.
Resumo:
Federal Highway Administration, Office of Safety and Traffic Operations, Washington, D.C.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
"CR807240."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.