930 resultados para Classification algorithms
Resumo:
Gestational trophoblastic neoplasia (GTN) is the term to describe a set of malignant placental diseases, including invasive mole, choriocarcinoma, placental site trophoblastic tumor and epithelioid trophoblastic tumor. Both invasive mole and choriocarcinoma respond well to chemotherapy, and cure rates are greater than 90%. Since the advent of chemotherapy, low-risk GTN has been treated with a single agent, usually methotrexate or actinomycin D. Cases of high-risk GTN, however, should be treated with multiagent chemotherapy, and the regimen usually selected is EMA-CO, which combines etoposide, methotrexate, actinomycin D, cyclophosphamide and vincristine. This study reviews the literature about GTN to discuss current knowledge about its diagnosis and treatment.
Resumo:
The purpose of the thesis is to classify suppliers and to enhance strategic purchasing in the case company. Supplier classification is conducted to fulfill the requirements of the company quality manual and international quality standards. To gain more benefit, a strategic purchasing tool, Kraljic’s purchasing portfolio and analytical hierarchy process are utilized for the base of supplier classification. Purchasing portfolio is used to give quick and easy visual insight on product group management form the viewpoint of purchasing. From the base on purchasing portfolio alternative purchasing and supplier strategies can be formed that enhance the strategic orientation of purchasing. Thus purchasing portfolio forces the company to orient on proactive and strategic purchasing. As a result a survey method for implementing purchasing portfolio in the company is developed that exploits analytical hierarchy process. Experts from the company appoint the categorization criteria and in addition, participate in the survey to categorize product groups on the portfolio. Alternative purchasing strategies are formed. Suppliers are classified depending on the importance and characteristics of the product groups supplied.
Resumo:
Avian pathogenic Escherichia coli (APEC) is responsible for various pathological processes in birds and is considered as one of the principal causes of morbidity and mortality, associated with economic losses to the poultry industry. The objective of this study was to demonstrate that it is possible to predict antimicrobial resistance of 256 samples (APEC) using 38 different genes responsible for virulence factors, through a computer program of artificial neural networks (ANNs). A second target was to find the relationship between (PI) pathogenicity index and resistance to 14 antibiotics by statistical analysis. The results showed that the RNAs were able to make the correct classification of the behavior of APEC samples with a range from 74.22 to 98.44%, and make it possible to predict antimicrobial resistance. The statistical analysis to assess the relationship between the pathogenic index (PI) and resistance against 14 antibiotics showed that these variables are independent, i.e. peaks in PI can happen without changing the antimicrobial resistance, or the opposite, changing the antimicrobial resistance without a change in PI.
Resumo:
Työssä käydään läpi tukivektorikoneiden teoreettista pohjaa sekä tutkitaan eri parametrien vaikutusta spektridatan luokitteluun.
Resumo:
Global illumination algorithms are at the center of realistic image synthesis and account for non-trivial light transport and occlusion within scenes, such as indirect illumination, ambient occlusion, and environment lighting. Their computationally most difficult part is determining light source visibility at each visible scene point. Height fields, on the other hand, constitute an important special case of geometry and are mainly used to describe certain types of objects such as terrains and to map detailed geometry onto object surfaces. The geometry of an entire scene can also be approximated by treating the distance values of its camera projection as a screen-space height field. In order to shadow height fields from environment lights a horizon map is usually used to occlude incident light. We reduce the per-receiver time complexity of generating the horizon map on N N height fields from O(N) of the previous work to O(1) by using an algorithm that incrementally traverses the height field and reuses the information already gathered along the path of traversal. We also propose an accurate method to integrate the incident light within the limits given by the horizon map. Indirect illumination in height fields requires information about which other points are visible to each height field point. We present an algorithm to determine this intervisibility in a time complexity that matches the space complexity of the produced visibility information, which is in contrast to previous methods which scale in the height field size. As a result the amount of computation is reduced by two orders of magnitude in common use cases. Screen-space ambient obscurance methods approximate ambient obscurance from the depth bu er geometry and have been widely adopted by contemporary real-time applications. They work by sampling the screen-space geometry around each receiver point but have been previously limited to near- field effects because sampling a large radius quickly exceeds the render time budget. We present an algorithm that reduces the quadratic per-pixel complexity of previous methods to a linear complexity by line sweeping over the depth bu er and maintaining an internal representation of the processed geometry from which occluders can be efficiently queried. Another algorithm is presented to determine ambient obscurance from the entire depth bu er at each screen pixel. The algorithm scans the depth bu er in a quick pre-pass and locates important features in it, which are then used to evaluate the ambient obscurance integral accurately. We also propose an evaluation of the integral such that results within a few percent of the ray traced screen-space reference are obtained at real-time render times.
Resumo:
This thesis studies the development of service offering model that creates added-value for customers in the field of logistics services. The study focusses on offering classification and structures of model. The purpose of model is to provide value-added solutions for customers and enable superior service experience. The aim of thesis is to define what customers expect from logistics solution provider and what value customers appreciate so greatly that they could invest in value-added services. Value propositions, costs structures of offerings and appropriate pricing methods are studied. First, literature review of creating solution business model and customer value is conducted. Customer value is found out with customer interviews and qualitative empiric data is used. To exploit expertise knowledge of logistics, innovation workshop tool is utilized. Customers and experts are involved in the design process of model. As a result of thesis, three-level value-added service offering model is created based on empiric and theoretical data. Offerings with value propositions are proposed and the level of model reflects the deepness of customer-provider relationship and the amount of added value. Performance efficiency improvements and cost savings create the most added value for customers. Value-based pricing methods, such as performance-based models are suggested to apply. Results indicate the interest of benefitting networks and partnership in field of logistics services. Networks development is proposed to be investigated further.
Resumo:
Identification of low-dimensional structures and main sources of variation from multivariate data are fundamental tasks in data analysis. Many methods aimed at these tasks involve solution of an optimization problem. Thus, the objective of this thesis is to develop computationally efficient and theoretically justified methods for solving such problems. Most of the thesis is based on a statistical model, where ridges of the density estimated from the data are considered as relevant features. Finding ridges, that are generalized maxima, necessitates development of advanced optimization methods. An efficient and convergent trust region Newton method for projecting a point onto a ridge of the underlying density is developed for this purpose. The method is utilized in a differential equation-based approach for tracing ridges and computing projection coordinates along them. The density estimation is done nonparametrically by using Gaussian kernels. This allows application of ridge-based methods with only mild assumptions on the underlying structure of the data. The statistical model and the ridge finding methods are adapted to two different applications. The first one is extraction of curvilinear structures from noisy data mixed with background clutter. The second one is a novel nonlinear generalization of principal component analysis (PCA) and its extension to time series data. The methods have a wide range of potential applications, where most of the earlier approaches are inadequate. Examples include identification of faults from seismic data and identification of filaments from cosmological data. Applicability of the nonlinear PCA to climate analysis and reconstruction of periodic patterns from noisy time series data are also demonstrated. Other contributions of the thesis include development of an efficient semidefinite optimization method for embedding graphs into the Euclidean space. The method produces structure-preserving embeddings that maximize interpoint distances. It is primarily developed for dimensionality reduction, but has also potential applications in graph theory and various areas of physics, chemistry and engineering. Asymptotic behaviour of ridges and maxima of Gaussian kernel densities is also investigated when the kernel bandwidth approaches infinity. The results are applied to the nonlinear PCA and to finding significant maxima of such densities, which is a typical problem in visual object tracking.
Resumo:
The predominant type of liver alteration in asymptomatic or oligosymptomatic chronic male alcoholics (N = 169) admitted to a psychiatric hospital for detoxification was classified by two independent methods: liver palpation and multiple quadratic discriminant analysis (QDA), the latter applied to two parameters reported by the patient (duration of alcoholism and daily amount ingested) and to the data obtained from eight biochemical blood determinations (total bilirubin, alkaline phosphatase, glycemia, potassium, aspartate aminotransferase, albumin, globulin, and sodium). All 11 soft and sensitive, and 13 firm and sensitive livers formed fully concordant groups as determined by QDA. Among the 22 soft and not sensitive livers, 95% were concordant by QDA grouping. Concordance rates were low (55%) in the 73 firm and not sensitive livers, and intermediate (76%) in the 50 not palpable livers. Prediction of the liver palpation characteristics by QDA was 95% correct for the firm and not sensitive livers and moderate for the other groups. On a preliminary basis, the variables considered to be most informative by QDA were the two anamnestic data and bilirubin levels, followed by alkaline phosphatase, glycemia and potassium, and then by aspartate aminotransferase and albumin. We conclude that, when biopsies would be too costly or potentially injurious to the patients to varying extents, clinical data could be considered valid to guide patient care, at least in the three groups (soft, not sensitive; soft, sensitive; firm, sensitive livers) in which the two noninvasive procedures were highly concordant in the present study.
Resumo:
The authors propose a clinical classification to monitor the evolution of tetanus patients, ranging from grade I to IV according to severity. It was applied on admission and repeated on alternate days up to the 10th day to patients aged > or = 12 years admitted to the State University Hospital, Recife, Brazil. Patients were also classified upon admission according to three prognostic indicators to determine if the proposed classification is in agreement with the traditionally used indicators. Upon admission, the distribution of the 64 patients among the different levels of the proposed classification was similar for the groups of better and worse prognosis according to the three indicators (P > 0.05), most of the patients belonging to grades I and II of the proposed classification. In the later reclassifications, severe forms of tetanus (grades III and IV) were more frequent in the categories of worse prognosis and these differences were statistically significant. There was a reduction in the proportion of mild forms (grades I and II) of tetanus with time for the categories of worse prognostic indicators (chi-square for trend: P = 0.00006, 0.03, and 0.00000) whereas no such trend was observed for the categories of better prognosis (grades I and II). This serially used classification reflected the prognosis of the traditional indicators and permitted the comparison of the dynamics of the disease in different groups. Thus, it becomes a useful tool for monitoring patients by determining clinical category changes with time, and for assessing responses to different therapeutic measures.
Resumo:
We compared the cost-benefit of two algorithms, recently proposed by the Centers for Disease Control and Prevention, USA, with the conventional one, the most appropriate for the diagnosis of hepatitis C virus (HCV) infection in the Brazilian population. Serum samples were obtained from 517 ELISA-positive or -inconclusive blood donors who had returned to Fundação Pró-Sangue/Hemocentro de São Paulo to confirm previous results. Algorithm A was based on signal-to-cut-off (s/co) ratio of ELISA anti-HCV samples that show s/co ratio ³95% concordance with immunoblot (IB) positivity. For algorithm B, reflex nucleic acid amplification testing by PCR was required for ELISA-positive or -inconclusive samples and IB for PCR-negative samples. For algorithm C, all positive or inconclusive ELISA samples were submitted to IB. We observed a similar rate of positive results with the three algorithms: 287, 287, and 285 for A, B, and C, respectively, and 283 were concordant with one another. Indeterminate results from algorithms A and C were elucidated by PCR (expanded algorithm) which detected two more positive samples. The estimated cost of algorithms A and B was US$21,299.39 and US$32,397.40, respectively, which were 43.5 and 14.0% more economic than C (US$37,673.79). The cost can vary according to the technique used. We conclude that both algorithms A and B are suitable for diagnosing HCV infection in the Brazilian population. Furthermore, algorithm A is the more practical and economical one since it requires supplemental tests for only 54% of the samples. Algorithm B provides early information about the presence of viremia.
Resumo:
Since the times preceding the Second World War the subject of aircraft tracking has been a core interest to both military and non-military aviation. During subsequent years both technology and configuration of the radars allowed the users to deploy it in numerous fields, such as over-the-horizon radar, ballistic missile early warning systems or forward scatter fences. The latter one was arranged in a bistatic configuration. The bistatic radar has continuously re-emerged over the last eighty years for its intriguing capabilities and challenging configuration and formulation. The bistatic radar arrangement is used as the basis of all the analyzes presented in this work. The aircraft tracking method of VHF Doppler-only information, developed in the first part of this study, is solely based on Doppler frequency readings in relation to time instances of their appearance. The corresponding inverse problem is solved by utilising a multistatic radar scenario with two receivers and one transmitter and using their frequency readings as a base for aircraft trajectory estimation. The quality of the resulting trajectory is then compared with ground-truth information based on ADS-B data. The second part of the study deals with the developement of a method for instantaneous Doppler curve extraction from within a VHF time-frequency representation of the transmitted signal, with a three receivers and one transmitter configuration, based on a priori knowledge of the probability density function of the first order derivative of the Doppler shift, and on a system of blocks for identifying, classifying and predicting the Doppler signal. The extraction capabilities of this set-up are tested with a recorded TV signal and simulated synthetic spectrograms. Further analyzes are devoted to more comprehensive testing of the capabilities of the extraction method. Besides testing the method, the classification of aircraft is performed on the extracted Bistatic Radar Cross Section profiles and the correlation between them for different types of aircraft. In order to properly estimate the profiles, the ADS-B aircraft location information is adjusted based on extracted Doppler frequency and then used for Bistatic Radar Cross Section estimation. The classification is based on seven types of aircraft grouped by their size into three classes.
Resumo:
The aim of this study was to analyze clinical aspects, hearing evolution and efficacy of clinical treatment of patients with sudden sensorineural hearing loss (SSNHL). This was a prospective clinical study of 136 consecutive patients with SSNHL divided into three groups after diagnostic evaluation: patients with defined etiology (DE, N = 13, 10%), concurrent diseases (CD, N = 63, 46.04%) and idiopathic sudden sensorineural hearing loss (ISSHL, N = 60, 43.9%). Initial treatment consisted of prednisone and pentoxifylline. Clinical aspects and hearing evolution for up to 6 months were evaluated. Group CD comprised 73% of patients with metabolic decompensation in the initial evaluation and was significantly older (53.80 years) than groups DE (41.93 years) and ISSHL (39.13 years). Comparison of the mean initial and final hearing loss of the three groups revealed a significant hearing improvement for group CD (P = 0.001) and group ISSHL (P = 0.001). Group DE did not present a significant difference in thresholds. The clinical classification for SSNHL allows the identification of significant differences regarding age, initial and final hearing impairment and likelihood of response to therapy. Elevated age and presence of coexisting disease were associated with a greater initial hearing impact and poorer hearing recovery after 6 months. Patients with defined etiology presented a much more limited response to therapy. The occurrence of decompensated metabolic and cardiovascular diseases and the possibility of first manifestation of auto-immune disease and cerebello-pontine angle tumors justify an adequate protocol for investigation of SSNHL.
Resumo:
The objective of the present study was to evaluate the characteristics of acute kidney injury (AKI) in AIDS patients and the value of RIFLE classification for predicting outcome. The study was conducted on AIDS patients admitted to an infectious diseases hospital inBrazil. The patients with AKI were classified according to the RIFLE classification: R (risk), I (injury), F (failure), L (loss), and E (end-stage renal disease). Univariate and multivariate analyses were used to evaluate the factors associated with AKI. A total of 532 patients with a mean age of 35 ± 8.5 years were included in this study. AKI was observed in 37% of the cases. Patients were classified as "R" (18%), "I" (7.7%) and "F" (11%). Independent risk factors for AKI were thrombocytopenia (OR = 2.9, 95%CI = 1.5-5.6, P < 0.001) and elevation of aspartate aminotransferase (AST) (OR = 3.5, 95%CI = 1.8-6.6, P < 0.001). General mortality was 25.7% and was higher among patients with AKI (40.2 vs17%, P < 0.001). AKI was associated with death and mortality increased according to RIFLE classification - "R" (OR 2.4), "I" (OR 3.0) and "F" (OR 5.1), P < 0.001. AKI is a frequent complication in AIDS patients, which is associated with increased mortality. RIFLE classification is an important indicator of poor outcome for AIDS patients.