972 resultados para Biological and medical physics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antimicrobial peptides (AMPs) are a promising solution to face the antibiotic-resistant problem because they display little or no resistance effects. Dimeric analogues of select AMPs have shown pharmacotechnical advantages, making these molecules promising candidates for the development of novel antibiotic agents. Here, we evaluate the effects of dimerization on the structure and biological activity of the AMP aurein 1.2 (AU). AU and the C- and N-terminal dimers, (AU)2K and E(AU)2, respectively, were synthesized by solid-phase peptide synthesis. Circular dichroism spectra indicated that E(AU)2 has a coiled coil structure in water while (AU)2K has an α-helix structure. In contrast, AU displayed typical spectra for disordered structures. In LPC micelles, all peptides acquired a high amount of α-helix structure. Hemolytic and vesicle permeabilization assays showed that AU has a concentration dependence activity, while this effect was less pronounced for dimeric versions, suggesting that dimerization may change the mechanism of action of AU. Notably, the antimicrobial activity against bacteria and yeast decreased with dimerization. However, dimeric peptides promoted the aggregation of C. albicans. The ability to aggregate yeast cells makes dimeric versions of AU attractive candidates to inhibit the adhesion of C. albicans to biological targets and medical devices, preventing disease caused by this fungus. © 2013 Springer-Verlag Wien.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Medical Physics has been developing very fast due to the progress of the technologies and to the increase of the concerns with cure of diseases. One of the Medical Physics main performances at the present time is the use of ionizing radiations for cancer treatment, especially, services as Radiotherapy. The radiotherapy technique uses ionizing radiation with therapeutic end of cancer controls, avoiding your proliferation and it worsens of the patient. For the treatment a radiation bunch is used, with rectangular form, that it passes through the different types of tissues of the patient's body, and depending on the attenuation and of the depth of the fabrics, a great amount of energy is deposited inside in different points of the body. Like this, to plan this treatment type it should be obtained the dimension of the distribution and dose absorption along the volume. For this, it is necessary in the planning of the treatment of the cancer for radiotherapy to build isodose curves, which are lines that represent points of same amount of dose to be deposited in the area to be treated. To aid the construction of the curves of form isodose to reach the best result in the planning of the treatment, in other words, a great planning, providing the maximum of dose in the tumor and saving the healthy and critical organs, it has been using mathematical tools and computational. A plan of cancer treatment for radiotherapy is considered great when all the parameters that involve the treatment, be them physical or biological, they were investigated and adapted individually for the patient. For that, is considered the type and the location of the tumor, worrying about the elimination of the cancer without damaging the healthy tissue of the treated area, mainly the risk organs, which are in general very sensitive to the radiations. This way, the optimization techniques... (Complete abstract click electronic access below)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The huge demand for procedures involving ionizing radiation promotes the need for safe methods of experimentation considering the danger of their biological e ects with consequent risk to humans. Brazilian's legislation prohibits experiments involving this type of radiation in humans through Decree 453 of Ministry of Health with determines that such procedures comply with the principles of justi cation, optimization and dose limitation. In this line, concurrently with the advancement of available computer processing power, computing simulations have become relevant in those situations where experimental procedures are too cost or impractical. The Monte Carlo method, created along the Manhattan Project duringWorldWar II, is a powerful strategy to simulations in computational physics. In medical physics, this technique has been extensively used with applications in diagnostics and cancer treatment. The objective of this work is to simulate the production and detection of X-rays for the energy range of diagnostic radiology, for molybdenum target, using the Geant4 toolkit. X-ray tubes with this kind of target material are used in diagnostic radiology, speci cally in mammography, one of the most used techniques for screening of breast cancer in women. During the simulations, we used di erent models for bremsstrahlung available in physical models for low energy, in situations already covered by the literature in earlier versions of Geant4. Our results show that although the physical situations seems qualitatively adequate, quantitative comparisons to available analytical data shows aws in the code of Geant4 Low Energy source

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postoperative endoscopic recurrence (PER) occurs in nearly 80% of patients 1 year after ileocecal resection in patients with Crohn's disease (CD). Biological agents were more effective in reducing the rates of PER in comparison with conventional therapy, in prospective trials. The aim of this study was to compare the PER rates of biological versus conventional therapy after ileocecal resections in patients with CD in real-world practice. The MULTIPER (Multicenter International Postoperative Endoscopic Recurrence) database is a retrospective analysis of PER rates in CD patients after ileocecal resection, from 7 referral centers in 3 different countries. All consecutive patients who underwent ileocecal resections between 2008 and 2012 and in whom colonoscopies had been performed up to 12 months after surgery, were included. Recurrence was defined as Rutgeerts' score ≥i2. The patients were allocated to either biological or conventional therapy after surgery, and PER rates were compared between the groups. Initially, 231 patients were evaluated, and 63 were excluded. Of the 168 patients in the database, 96 received anti-tumor necrosis factor agents and 72 were treated with conventional therapy after resection. The groups were comparable regarding age, gender, and perianal disease. There was longer disease duration, more previous resections, and more open surgical procedures in patients on biologicals postoperatively. PER was identified in 25/96 (26%) patients on biological therapy and in 24/72 (33.3%) patients on conventional therapy (P=0.310). In this retrospective observational analysis from an international database, no difference was observed between biological and conventional therapy in preventing PER after ileocecal resections in CD patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study is to retrospectively report the results of interventions for controlling a vancomycin-resistant enterococcus (VRE) outbreak in a tertiary-care pediatric intensive care unit (PICU) of a University Hospital. After identification of the outbreak, interventions were made at the following levels: patient care, microbiological surveillance, and medical and nursing staff training. Data were collected from computer-based databases and from the electronic prescription system. Vancomycin use progressively increased after March 2008, peaking in August 2009. Five cases of VRE infection were identified, with 3 deaths. After the interventions, we noted a significant reduction in vancomycin prescription and use (75% reduction), and the last case of VRE infection was identified 4 months later. The survivors remained colonized until hospital discharge. After interventions there was a transient increase in PICU length-of-stay and mortality. Since then, the use of vancomycin has remained relatively constant and strict, no other cases of VRE infection or colonization have been identified and length-of-stay and mortality returned to baseline. In conclusion, we showed that a bundle intervention aiming at a strict control of vancomycin use and full compliance with the Hospital Infection Control Practices Advisory Committee guidelines, along with contact precautions and hand-hygiene promotion, can be effective in reducing vancomycin use and the emergence and spread of vancomycin-resistant bacteria in a tertiary-care PICU.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal muscles from old rats fail to completely regenerate following injury. This study investigated whether pharmacological stimulation of beta 2-adrenoceptors in aged muscles following injury could improve their regenerative capacity, focusing on myofiber size recovery. Young and aged rats were treated with a subcutaneous injection of beta 2-adrenergic agonist formoterol (2 mu g/kg/d) up to 10 and 21 days after soleus muscle injury. Formoterol-treated muscles from old rats evaluated at 10 and 21 days postinjury showed reduced inflammation and connective tissue but a similar number of regenerating myofibers of greater caliber when compared with their injured controls. Formoterol minimized the decrease in tetanic force and increased protein synthesis and mammalian target of rapamycin phosphorylation in old muscles at 10 days postinjury. Our results suggest that formoterol improves structural and functional regenerative capacity of regenerating skeletal muscles from aged rats by increasing protein synthesis via mammalian target of rapamycin activation. Furthermore, formoterol may have therapeutic benefits in recovery following muscle damage in senescent individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of laser light to modify the material's surface or bulk as well as to induce changes in the volume through a chemical reaction has received great attention in the last few years, due to the possibility of tailoring the material's properties aiming at technological applications. Here, we report on recent progress of microstructuring and microfabrication in polymeric materials by using femtosecond lasers. In the first part, we describe how polymeric materials' micromachining, either on the surface or bulk, can be employed to change their optical and chemical properties promising for fabricating waveguides, resonators, and self-cleaning surfaces. In the second part, we discuss how two-photon absorption polymerization can be used to fabricate active microstructures by doping the basic resin with molecules presenting biological and optical properties of interest. Such microstructures can be used to fabricate devices with applications in optics, such as microLED, waveguides, and also in medicine, such as scaffolds for tissue growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of 3-(triazolyl)-coumarins were synthesized and tested as anti-inflammatory agents. It was possible to infer that these compounds do not alter the interaction of LPS with TLR-4 or TLR-2, as the intracellular pathways involved in the TNF-alpha secretion and COX-2 activity were not affected. Nevertheless, the compounds inhibited iNOS-derived NO production, without affecting the eNOS activity. The outcome of the docking studies showed that it pi center dot center dot center dot pi interactions with the heme group are important for the iNOS inhibition, thus making compound 3c a promising lead. Moreover, the efficacy of this compound was visualized by the reduced number of neutrophils in the LPS-inflamed subcutaneous tissue. Together, biological and docking data show that triazolyl-substituted coumarins, that can act on iNOS, are a good scaffold to be explored. (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a research paper in which we discuss “active learning” in the light of Cultural-Historical Activity Theory (CHAT), a powerful framework to analyze human activity, including teaching and learning process and the relations between education and wider human dimensions as politics, development, emancipation etc. This framework has its origin in Vygotsky's works in the psychology, supported by a Marxist perspective, but nowadays is a interdisciplinary field encompassing History, Anthropology, Psychology, Education for example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this Ph.D. project has been the design and characterization of new and more efficient luminescent tools, in particular sensors and labels, for analytical chemistry, medical diagnostics and imaging. Actually both the increasing temporal and spatial resolutions that are demanded by those branches, coupled to a sensitivity that is required to reach the single molecule resolution, can be provided by the wide range of techniques based on luminescence spectroscopy. As far as the development of new chemical sensors is concerned, as chemists we were interested in the preparation of new, efficient, sensing materials. In this context, we kept developing new molecular chemosensors, by exploiting the supramolecular approach, for different classes of analytes. In particular we studied a family of luminescent tetrapodal-hosts based on aminopyridinium units with pyrenyl groups for the detection of anions. These systems exhibited noticeable changes in the photophysical properties, depending on the nature of the anion; in particular, addition of chloride resulted in a conformational change, giving an initial increase in excimeric emission. A good selectivity for dicarboxylic acid was also found. In the search for higher sensitivities, we moved our attention also to systems able to perform amplification effects. In this context we described the metal ion binding properties of three photoactive poly-(arylene ethynylene) co-polymers with different complexing units and we highlighted, for one of them, a ten-fold amplification of the response in case of addition of Zn2+, Cu2+ and Hg2+ ions. In addition, we were able to demonstrate the formation of complexes with Yb3+ an Er3+ and an efficient sensitization of their typical metal centered NIR emission upon excitation of the polymer structure, this feature being of particular interest for their possible applications in optical imaging and in optical amplification for telecommunication purposes. An amplification effect was also observed during this research in silica nanoparticles derivatized with a suitable zinc probe. In this case we were able to prove, for the first time, that nanoparticles can work as “off-on” chemosensors with signal amplification. Fluorescent silica nanoparticles can be thus seen as innovative multicomponent systems in which the organization of photophysically active units gives rise to fruitful collective effects. These precious effects can be exploited for biological imaging, medical diagnostic and therapeutics, as evidenced also by some results reported in this thesis. In particular, the observed amplification effect has been obtained thanks to a suitable organization of molecular probe units onto the surface of the nanoparticles. In the effort of reaching a deeper inside in the mechanisms which lead to the final amplification effects, we also attempted to find a correlation between the synthetic route and the final organization of the active molecules in the silica network, and thus with those mutual interactions between one another which result in the emerging, collective behavior, responsible for the desired signal amplification. In this context, we firstly investigated the process of formation of silica nanoparticles doped with pyrene derivative and we showed that the dyes are not uniformly dispersed inside the silica matrix; thus, core-shell structures can be formed spontaneously in a one step synthesis. Moreover, as far as the design of new labels is concerned, we reported a new synthetic approach to obtain a class of robust, biocompatible silica core-shell nanoparticles able to show a long-term stability. Taking advantage of this new approach we also showed the synthesis and photophysical properties of core-shell NIR absorbing and emitting materials that proved to be very valuable for in-vivo imaging. In general, the dye doped silica nanoparticles prepared in the framework of this project can conjugate unique properties, such as a very high brightness, due to the possibility to include many fluorophores per nanoparticle, high stability, because of the shielding effect of the silica matrix, and, to date, no toxicity, with a simple and low-cost preparation. All these features make these nanostructures suitable to reach the low detection limits that are nowadays required for effective clinical and environmental applications, fulfilling in this way the initial expectations of this research project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nano(bio)science and nano(bio)technology play a growing and tremendous interest both on academic and industrial aspects. They are undergoing rapid developments on many fronts such as genomics, proteomics, system biology, and medical applications. However, the lack of characterization tools for nano(bio)systems is currently considered as a major limiting factor to the final establishment of nano(bio)technologies. Flow Field-Flow Fractionation (FlFFF) is a separation technique that is definitely emerging in the bioanalytical field, and the number of applications on nano(bio)analytes such as high molar-mass proteins and protein complexes, sub-cellular units, viruses, and functionalized nanoparticles is constantly increasing. This can be ascribed to the intrinsic advantages of FlFFF for the separation of nano(bio)analytes. FlFFF is ideally suited to separate particles over a broad size range (1 nm-1 μm) according to their hydrodynamic radius (rh). The fractionation is carried out in an empty channel by a flow stream of a mobile phase of any composition. For these reasons, fractionation is developed without surface interaction of the analyte with packing or gel media, and there is no stationary phase able to induce mechanical or shear stress on nanosized analytes, which are for these reasons kept in their native state. Characterization of nano(bio)analytes is made possible after fractionation by interfacing the FlFFF system with detection techniques for morphological, optical or mass characterization. For instance, FlFFF coupling with multi-angle light scattering (MALS) detection allows for absolute molecular weight and size determination, and mass spectrometry has made FlFFF enter the field of proteomics. Potentialities of FlFFF couplings with multi-detection systems are discussed in the first section of this dissertation. The second and the third sections are dedicated to new methods that have been developed for the analysis and characterization of different samples of interest in the fields of diagnostics, pharmaceutics, and nanomedicine. The second section focuses on biological samples such as protein complexes and protein aggregates. In particular it focuses on FlFFF methods developed to give new insights into: a) chemical composition and morphological features of blood serum lipoprotein classes, b) time-dependent aggregation pattern of the amyloid protein Aβ1-42, and c) aggregation state of antibody therapeutics in their formulation buffers. The third section is dedicated to the analysis and characterization of structured nanoparticles designed for nanomedicine applications. The discussed results indicate that FlFFF with on-line MALS and fluorescence detection (FD) may become the unparallel methodology for the analysis and characterization of new, structured, fluorescent nanomaterials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the discovery of the nuclear magnetic resonance (NMR) phenomenon, countless NMR techniques have been developed that are today indispensable tools in physics, chemistry, biology, and medicine. As one of the main obstacles in NMR is its notorious lack of sensitivity, different hyperpolarization (HP) methods have been established to increase signals up to several orders of magnitude. In this work, different aspects of magnetic resonance, using HP noble gases, are studied, hereby combining different disciplines of research. The first part examines new fundamental effects in NMR of HP gases, in theory and experiment. The spin echo phenomenon, which provides the basis of numerous modern experiments, is studied in detail in the gas phase. The changes of the echo signal in terms of amplitude, shape, and position, due to the fast translational motion, are described by an extension of the existing theory and computer simulations. With this knowledge as a prerequisite, the detection of intermolecular double-quantum coherences was accomplished for the first time in the gas phase. The second part of this thesis focuses on the development of a practical method to enhance the dissolution process of HP 129Xe, without loss of polarization or shortening of T1. Two different setups for application in NMR spectroscopy and magnetic resonance imaging (MRI) are presented. The continuous operation allows biological and multidimensional spectroscopy in solutions. Also, first in vitro MRI images with dissolved HP 129Xe as contrast agent were obtained at a clinical scanner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major challenge in imaging is the detection of small amounts of molecules of interest. In the case of magnetic resonance imaging (MRI) their signals are typically concealed by the large background signal of e.g. the tissue of the body. This problem can be tackled by hyperpolarization which increases the NMR signals up to several orders of magnitude. However, this strategy is limited for 1H, the most widely used nucleus in NMR andrnMRI, because the enormous number of protons in the body screen the small amount of hyperpolarized ones.Here, I describe a method giving rise to high 1H MRI contrast for hyperpolarized molecules against a large background signal. The contrast is based on the J-coupling induced rephasing of the NMR signal of molecules hyperpolarized via parahydrogen induce polarization (PHIP) and it can easily be implemented in common pulse sequences.rnrnHyperpolarization methods typically require expensive technical equipment (e.g. lasers or microwaves) and most techniques work only in batch mode, thus the limited lifetime of the hyperpolarization is limiting its applications. Therefore, the second part of my thesis deals with the simple and efficient generation of an hyperpolarization.These two achievements open up alternative opportunities to use the standard MRI nucleus 1H for e.g. metabolic imaging in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oceans are key sources and sinks in the global budgets of significant atmospheric trace gases, termed Volatile Organic Compounds (VOCs). Despite their low concentrations, these species have an important role in the atmosphere, influencing ozone photochemistry and aerosol physics. Surprisingly, little work has been done on assessing their emissions or transport mechanisms and rates between ocean and atmosphere, all of which are important when modelling the atmosphere accurately.rnA new Needle Trap Device (NTD) - GC-MS method was developed for the effective sampling and analysis of VOCs in seawater. Good repeatability (RSDs <16 %), linearity (R2 = 0.96 - 0.99) and limits of detection in the range of pM were obtained for DMS, isoprene, benzene, toluene, p-xylene, (+)-α-pinene and (-)-α-pinene. Laboratory evaluation and subsequent field application indicated that the proposed method can be used successfully in place of the more usually applied extraction techniques (P&T, SPME) to extend the suite of species typically measured in the ocean and improve detection limits. rnDuring a mesocosm CO2 enrichment study, DMS, isoprene and α-pinene were identified and quantified in seawater samples, using the above mentioned method. Based on correlations with available biological datasets, the effects of ocean acidification as well as possible ocean biological sources were investigated for all examined compounds. Future ocean's acidity was shown to decrease oceanic DMS production, possibly impact isoprene emissions but not affect the production of α-pinene. rnIn a separate activity, ocean - atmosphere interactions were simulated in a large scale wind-wave canal facility, in order to investigate the gas exchange process and its controlling mechanisms. Air-water exchange rates of 14 chemical species (of which 11 VOCs) spanning a wide range of solubility (dimensionless solubility, α = 0:4 to 5470) and diffusivity (Schmidt number in water, Scw = 594 to 1194) were obtained under various turbulent (wind speed at ten meters height, u10 = 0:8 to 15ms-1) and surfactant modulated (two different sized Triton X-100 layers) surface conditions. Reliable and reproducible total gas transfer velocities were obtained and the derived values and trends were comparable to previous investigations. Through this study, a much better and more comprehensive understanding of the gas exchange process was accomplished. The role of friction velocity, uw* and mean square slope, σs2 in defining phenomena such as waves and wave breaking, near surface turbulence, bubbles and surface films was recognized as very significant. uw* was determined as the ideal turbulent parameter while σs2 described best the related surface conditions. A combination of both uw* and σs2 variables, was found to reproduce faithfully the air-water gas exchange process. rnA Total Transfer Velocity (TTV) model provided by a compilation of 14 tracers and a combination of both uw* and σs2 parameters, is proposed for the first time. Through the proposed TTV parameterization, a new physical perspective is presented which provides an accurate TTV for any tracer within the examined solubility range. rnThe development of such a comprehensive air-sea gas exchange parameterization represents a highly useful tool for regional and global models, providing accurate total transfer velocity estimations for any tracer and any sea-surface status, simplifying the calculation process and eliminating inevitable calculation uncertainty connected with the selection or combination of different parameterizations.rnrn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of dielectric properties concerns storage and dissipation of electric and magnetic energy in materials. Dielectrics are important in order to explain various phenomena in Solid-State Physics and in Physics of Biological Materials. Indeed, during the last two centuries, many scientists have tried to explain and model the dielectric relaxation. Starting from the Kohlrausch model and passing through the ideal Debye one, they arrived at more com- plex models that try to explain the experimentally observed distributions of relaxation times, including the classical (Cole-Cole, Davidson-Cole and Havriliak-Negami) and the more recent ones (Hilfer, Jonscher, Weron, etc.). The purpose of this thesis is to discuss a variety of models carrying out the analysis both in the frequency and in the time domain. Particular attention is devoted to the three classical models, that are studied using a transcendental function known as Mittag-Leffler function. We highlight that one of the most important properties of this function, its complete monotonicity, is an essential property for the physical acceptability and realizability of the models. Lo studio delle proprietà dielettriche riguarda l’immagazzinamento e la dissipazione di energia elettrica e magnetica nei materiali. I dielettrici sono importanti al fine di spiegare vari fenomeni nell’ambito della Fisica dello Stato Solido e della Fisica dei Materiali Biologici. Infatti, durante i due secoli passati, molti scienziati hanno tentato di spiegare e modellizzare il rilassamento dielettrico. A partire dal modello di Kohlrausch e passando attraverso quello ideale di Debye, sono giunti a modelli più complessi che tentano di spiegare la distribuzione osservata sperimentalmente di tempi di rilassamento, tra i quali modelli abbiamo quelli classici (Cole-Cole, Davidson-Cole e Havriliak-Negami) e quelli più recenti (Hilfer, Jonscher, Weron, etc.). L’obiettivo di questa tesi è discutere vari modelli, conducendo l’analisi sia nel dominio delle frequenze sia in quello dei tempi. Particolare attenzione è rivolta ai tre modelli classici, i quali sono studiati utilizzando una funzione trascendente nota come funzione di Mittag-Leffler. Evidenziamo come una delle più importanti proprietà di questa funzione, la sua completa monotonia, è una proprietà essenziale per l’accettabilità fisica e la realizzabilità dei modelli.