966 resultados para Bacterial pathogens
Resumo:
Plant parasitic nematodes (PPN) locate host plants by following concentration gradients of root exudate chemicals in the soil. We present a simple method for RNA interference (RNAi)-induced knockdown of genes in tomato seedling roots, facilitating the study of root exudate composition, and PPN responses. Knockdown of sugar transporter genes, STP1 and STP2, in tomato seedlings triggered corresponding reductions of glucose and fructose, but not xylose, in collected root exudate. This corresponded directly with reduced infectivity and stylet thrusting of the promiscuous PPN Meloidogyne incognita, however we observed no impact on the infectivity or stylet thrusting of the selective Solanaceae PPN Globodera pallida. This approach can underpin future efforts to understand the early stages of plant-pathogen interactions in tomato and potentially other crop plants.
Resumo:
Antimicrobial resistance is one of the leading threats to society. The increasing burden of multidrug-resistant Gram-negative infection is particularly concerning as such bacteria are demonstrating resistance to nearly all currently licensed therapies. Various strategies have been hypothesized to treat multidrug-resistant Gram-negative infections including: targeting the Gram-negative outer membrane; neutralization of lipopolysaccharide; inhibition of bacterial efflux pumps and prevention of protein folding. Silver and silver nanoparticles, fusogenic liposomes and nanotubes are potential strategies for extending the activity of licensed, Gram-positive selective, antibiotics to Gram-negatives. This may serve as a strategy to fill the current void in pharmaceutical development in the short term. This review outlines the most promising strategies that could be implemented to solve the threat of multidrug-resistant Gram-negative infections
Resumo:
Bacterial infections are an increasing problem for human health. In fact, an increasing number of infections are caused by bacteria that are resistant to most antibiotics and their combinations. Therefore, the scientific community is currently searching for new solutions to fight bacteria and infectious diseases, without promoting antimicrobial resistance. One of the most promising strategies is the disruption or attenuation of bacterial Quorum Sensing (QS), a refined system that bacteria use to communicate. In a QS event, bacteria produce and release specific small chemicals, signal molecules - autoinducers (AIs) - into the environment. At the same time that bacterial population grows, the concentration of AIs in the bacterial environment increases. When a threshold concentration of AIs is reached, bacterial cells respond to it by altering their gene expression profile. AIs regulate gene expression as a function of cell population density. Phenotypes mediated by QS (QSphenotypes) include virulence factors, toxin production, antibiotic resistance and biofilm formation. In this work, two polymeric materials (linear polymers and molecularly imprinted nanoparticles) were developed and their ability to attenuate QS was evaluated. Both types of polymers should to be able to adsorb bacterial signal molecules, limiting their availability in the extracellular environment, with expected disruption of QS. Linear polymers were composed by one of two monomers (itaconic acid and methacrylic acid), which are known to possess strong interactions with the bacterial signal molecules. Molecularly imprinted polymer nanoparticles (MIP NPs) are particles with recognition capabilities for the analyte of interest. This ability is attained by including the target analyte at the synthesis stage. Vibrio fischeri and Aeromonas hydrophila were used as model species for the study. Both the linear polymers and MIP NPs, tested free in solutions and coated to surfaces, showed ability to disrupt QS by decreasing bioluminescence of V. fischeri and biofilm formation of A. hydrophila. No significant effect on bacterial growth was detected. The cytotoxicity of the two types of polymers to a fibroblast-like cell line (Vero cells) was also tested in order to evaluate their safety. The results showed that both the linear polymers and MIP NPs were not cytotoxic in the testing conditions. In conclusion, the results reported in this thesis, show that the polymers developed are a promising strategy to disrupt QS and reduce bacterial infection and resistance. In addition, due to their low toxicity, solubility and easy integration by surface coating, the polymers have potential for applications in scenarios where bacterial infection is a problem: medicine, pharmaceutical, food industry and in agriculture or aquaculture.
Resumo:
Ticks as vectors of several notorious zoonotic pathogens, represent an important and increasing threat for human, animal health in Europe. Recent application of new technology revealed the complexity of the tick microbiome that might impact upon its vectorial capacity. Appreciation of these complex systems is expanding our vision of tick-borne pathogens leading us to evolve a more integrated view that embraces the “pathobiome” representing the pathogenic agent integrated within its abiotic and biotic environments. In this review, we will explore how this new vision will revolutionize our understanding of tick-borne diseases. We will discuss the implications in terms of research approach for the future in order to efficiently prevent and control the threat posed by ticks.
Resumo:
In the field of control systems it is common to use techniques based on model adaptation to carry out control for plants for which mathematical analysis may be intricate. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this line, this paper gives a perspective on the quality of results given by two different biologically connected learning algorithms for the design of B-spline neural networks (BNN) and fuzzy systems (FS). One approach used is the Genetic Programming (GP) for BNN design and the other is the Bacterial Evolutionary Algorithm (BEA) applied for fuzzy rule extraction. Also, the facility to incorporate a multi-objective approach to the GP algorithm is outlined, enabling the designer to obtain models more adequate for their intended use.
Resumo:
The design phase of B-spline neural networks is a highly computationally complex task. Existent heuristics have been found to be highly dependent on the initial conditions employed. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this paper, the Bacterial Programming approach is presented, which is based on the replication of the microbial evolution phenomenon. This technique produces an efficient topology search, obtaining additionally more consistent solutions.
Resumo:
The design phase of B-spline neural networks represents a very high computational task. For this purpose, heuristics have been developed, but have been shown to be dependent on the initial conditions employed. In this paper a new technique, Bacterial Programming, is proposed, whose principles are based on the replication of the microbial evolution phenomenon. The performance of this approach is illustrated and compared with existing alternatives.
Resumo:
This paper presents a method of using the so-colled "bacterial algorithm" (4,5) for extracting a fuzzy rule base from a training set. The bewly proposed bacterial evolutionary algorithm (BEA) is shown. In our application one bacterium corresponds to a fuzzy rule system.
Resumo:
Tese de doutoramento, Ciências e Tecnologias da Saúde (Microbiologia), Universidade de Lisboa, Faculdade de Medicina, 2014
Resumo:
Tese de doutoramento, Medicina (Medicina Interna), Universidade de Lisboa, Faculdade de Medicina, 2014
Resumo:
Oomycetes form a deep lineage of eukaryotic organisms that includes a large number of plant pathogens that threaten natural and managed ecosystems. We undertook a survey to query the community for their ranking of plant pathogenic oomycete species based on scientific and economic importance. In total, we received 263 votes from 62 scientists in 15 countries for a total of 33 species. The Top 10 species and their ranking are: (1) Phytophthora infestans; (2, tied) Hyaloperonospora arabidopsidis; (2, tied) Phytophthora ramorum; (4) Phytophthora sojae; (5) Phytophthora capsici; (6) Plasmopara viticola; (7) Phytophthora cinnamomi; (8, tied) Phytophthora parasitica; (8, tied) Pythium ultimum; and (10) Albugo candida. The article provides an introduction to these 10 taxa and a snapshot of current research. We hope that the list will serve as a benchmark for future trends in oomycete research.
Resumo:
Plants defend themselves against microbial pathogens through a range of highly sophisticated and integrated molecular systems. Recognition of pathogen-secreted effector proteins often triggers the hypersensitive response (HR), a complex multicellular defense reaction where programmed cell death (PCD) of cells surrounding the primary site of infection is a prominent feature. Even though the HR was described almost a century ago, cell to cell factors acting at the local level generating the full defense reaction has remained obscure. In this study, we sought to identify diffusible molecules produced during the HR that could induce cell death in naïve tissue. We found that 4-methylsulfinylbutyl isothiocyanate (sulforaphane) is released by Arabidopsis thaliana leaf tissue undergoing HR, and that this compound induces cell death as well as prime defense in naïve tissue. Two different mutants impaired in the pathogen-induced accumulation of sulforaphane displayed attenuated PCD upon bacterial and oomycete effector recognition as well as decreased resistance to several isolates of the plant pathogen Hyaloperonospora arabidopsidis. Treatment with sulforaphane provided protection against a virulent H. arabidopsidis isolate. Glucosinolate breakdown products are recognized as antifeeding compounds towards insects and recently also as intracellular signaling and bacteriostatic molecules in Arabidopsis. The data presented herein indicate that these compounds also trigger local defense responses in Arabidopsis tissue.
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Fitness centres are special places where conditions for microbiological proliferation should be considered. Moisture due to human perspiration and water condensation as a result of human physical activities are prevalent in this type of buildings. Exposure to microbial contaminants is clinically associated with respiratory disorders and people who work out in polluted environments would be susceptible to contaminants. This work studied the indoor air contamination in three gymnasiums in Lisbon. The sampling was performed at two periods: at the opening (morning) and closing (night) of the three gymnasiums. The airborne bacterial and fungal populations were sampled by impaction directly onto Tryptic Soy Agar (for bacteria) and Malt Extract Agar (for fungi) plates, using a Merck MAS-100 air sampler. Higher bacterial concentrations were found at night as compared to the morning but the same behaviour was not found for fungal concentrations. Gram-negative catalase positive cocci were the dominant bacteria in indoor air samples of the studied gymnasiums. In this study, 21 genera/species of fungal colonies were identified. Chrysosporium sp., Chrysonilia sp., Neoscytalidium hialinum, Sepedonium sp. and Penicillium sp. were the most prevalent species identified in the morning, while Cladosporium sp., Penicillium sp., Chrysosporium sp., Acremonium sp. and Chrysonilia sp. were more prevalent at night. A well-designed sanitation and maintenance program for gymnasiums is needed to ensure healthier space for indoor physical activity.