986 resultados para BLUE-SHIFT
Resumo:
From late 2008 onwards, in the space of six months, international financial regulatory networks centred around the Swiss city of Basel presided over a startlingly rapid ideational shift, the significance and importance of which remains to be deciphered. From being relatively unpopular and very much on the sidelines, the idea of macroprudential regulation (MPR) moved to the centre of the policy agenda and came to represent a new Basel consensus, as the principal interpretative frame, for financial technocrats and regulators seeking to diagnose and understand the financial crisis and to advance institutional blueprints for regulatory reform. This article sets out to explain how and why that ideational shift occurred. It identifies four scoping conditions of presence, position, promotion, and plausibility, that account for the successful rise to prominence of macroprudential ideas through an insiders' coup d'état. The final section of the article argues that this macroprudential shift is an example of a ‘gestalt flip’ or third order change in Peter Hall's terms, but it is not yet a paradigm shift, because the development of first order policy settings and second order policy instruments is still ongoing, giving the macroprudential ideational shift a highly contested and contingent character.
Resumo:
Using density functional theory (DFT) and kinetic analyses, a new carboxyl mechanism for the water-gas-shift reaction (WGSR) on Au/CeO2(111) is proposed. Many elementary steps in the WGSR are studied using an Au cluster supported on CeO2(111). It is found that (i) water can readily dissociate at the interface between Au and CeO2; (ii) CO2 can be produced via two steps: adsorbed CO on the Au cluster reacts with active OH on ceria to form the carboxyl (COOH) species and then COOH reacts with OH to release CO2; and (iii) two adsorbed H atoms recombine to form molecular H-2 on the Au cluster. Our kinetic analyses show that the turnover frequency of the carboxyl mechanism is consistent with the experimental one while the rates of redox and formate mechanisms are much slower than that of carboxyl mechanism. It is suggested that the carboxyl pathway is likely to be responsible for WGSR on Au/CeO2.
Resumo:
Voltage-sensitive ionic currents were identified and characterised in ventricular myocytes of the bivalve mollusc, Mytilus edulis, using the whole-cell patch-clamp technique. Two outward currents could be distinguished. A potassium A current (I-A) activated at - 30 mV from a holding potential of - 60 mV. This transient current was inactivated by holding the cells at a potential of - 40 mV and was also blocked by applying 4-aminopyridine (3 mM) to the external bath solution. A second current was identified as a delayed rectifier (I-K). This also activated at - 30 mV but exhibited a sustained time course and was still activated at a holding potential of - 40 mV. Both outward currents were reduced in the presence of tetraethylammonium ions (30 mM). A small number of heart cells also showed an inward sodium current (I-Na). This current appeared at potentials more positive than - 50 mV, reached a maximum at - 20 mV, and decreased with further depolarisation. I-Na was inactivated at a holding potential of - 40 mV and was blocked by tetrodotoxin (1 mu M). A second inward current had a sustained time course and was not inactivated by holding the cell at a potential of -40 mV, and was also not abolished by tetrodotoxin. This current peaked at 0 mV, decreasing with further depolarisation. Furthermore, it was enhanced by the addition of barium ions (3 mM) to the bath and was blocked by external cobalt (2 mM) or nifedipine (15 mu M) These findings are consistent with this being an L-type calcium current (I-Ca) The possible physiological roles of these currents in M. edulis heart are discussed. (C) 1999 Elsevier Science Inc. All rights reserved.
Resumo:
Valve and cardiac activity were simultaneously measured in the blue mussel (Mytilus edulis) in response to 10 d copper exposure. Valve movements, heart rates and heart-rate variability were obtained non-invasively using a Musselmonitor(R) (valve activity) and a modified version of the Computer-Aided Physiological Monitoring system (CAPMON; cardiac activity). After 2 d exposure of mussels (4 individuals per treatment group) to a range of dissolved copper concentrations (0 to 12.5 mu M as CuCl2) median valve positions (% open) and median heart rates (beats per minute) declined as a function of copper concentration. Heart-rate variability (coefficient of variation for interpulse durations) rose in a concentration-dependent manner. The 48 h EC50 values (concentrations of copper causing 50% change) for valve positions, heart rates and heart-rate variability were 2.1, 0.8, and 0.06 mu M, respectively. Valve activity was weakly correlated with both heart rate (r = 0.48 +/- 0.02) and heart-rate variability (r = 0.32 +/- 0.06) for control individuals (0 mu M Cu2+). This resulted from a number of short enclosure events that did not coincide with a change in cardiac activity. Exposure of mussels to increasing copper concentrations (greater than or equal to 0.8 mu M) progressively reduced the correlation between valve activity and heart rates (r = 0 for individuals dosed with greater than or equal to 6.3 mu M Cu2+), while correlations between valve activity and heart-rate variability were unaffected. The poor correlations resulted from periods of valve flapping that were not mimicked by similar fluctuations in heart rate or heart-rate variability. The data suggest that the copper-induced bradycardia observed in mussels is not a consequence of prolonged valve closure.
Resumo:
Previous studies have shown that low levels of copper (down to 0.8 muM) induce bradycardia in the blue mussel (Mytilus edulis) and that this is not caused by prolonged Valve closure. The aim of this study was to determine the precise mechanism responsible. To establish if copper was directly affecting heart cell physiology, recordings of contractions from isolated ventricular strips were made using an isometric force transducer, in response to copper concentrations (as CuCl2) ranging between 1 muM and 1 mM. Inhibition of mechanical activity only occurred at 1 mM copper, suggesting that the copper-induced bradycardia observed in whole animals cannot be attributed to direct cardiotoxicity. Effects of copper on the cardiac nerves were subsequently examined. Following removal of visceral ganglia (from where the cardiac nerves originate), exposure to 12.5 muM copper had no effect on the heart rate of whole animals. The effect of copper on the heart rate of mussels could not be abolished by depletion of the monoamine content of the animal using reserpine. However, pre-treatment of the animals with alpha -bungarotoxin considerably reduced the sensitivity of the heart to copper. These results indicated that the influence of copper on the heart of M. edulis might be mediated by a change in the activity of cholinergic nerves to heart. In the final experiments, mussels were injected with either benzoquinonium or D-tubocurarine, prior to copper exposure, in an attempt to selectively block the inhibitory or excitatory cholinoreceptors of the heart. Only benzoquinonium decreased the susceptibility of the heart to copper, suggesting that copper affects the cardiac activity of blue mussels by stimulating inhibitory cholinergic nerves to the heart. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Electrosynthesis methods using molten salts are suggested for obtaining a new catalytic system based on the Mo2C/Mo composition for the water gas shift reaction. The coatings obtained by the discharge of the carbonate ion on a molybdenum substrate and by the simultaneous reduction of the electroactive species MoO42 and CO32- are catalytically more active than bulk Mo2C or the commercial catalyst Cu-ZnO-Al2O3 by one and three orders of magnitude, respectively.