836 resultados para Automotive engineering|Energy|Materials science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adhesives used for applications in marine environments are subject to particular chemical conditions, which are mainly characterised by an elevated chlorine ion content and intermittent wetting/drying cycles, among others.These conditions can limit the use of adhesives due to the degradation processes that they experience. In this work, the chemical degradation of two different polymers, polyurethane and vinylester, was studied in natural seawater under immersion for different periods of time.The diffusion coefficients and concentration profiles of water throughout the thickness of the adhesiveswere obtained.Microstructural changes in the polymer due to the action of water were observed by SEM, and the chemical degradation of the polymer was monitored with the Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The degradation of the mechanical properties of the adhesive was determined by creep tests withMixed Cantilever Beam (MCB) specimens at different temperatures. After 180 days of immersion of the specimens, it was concluded that the J-integral value (depending on the strain) implies a loss of stiffness of 51% and a decrease in the failure load of 59% for the adhesive tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several attempts have been carried out to manufacture intermediate band solar cells (IBSC) by means of quantum dot (QD) superlattices. This novel photovoltaic concept allows the collection of a wider range of the sunlight spectrum in order to provide higher cell photocurrent while maintaining the open-circuit voltage (VOC) of the cell. In this work, we analyze InAs/GaAsN QD-IBSCs. In these cells, the dilute nitrogen in the barrier plays an important role for the strain-balance (SB) of the QD layer region that would otherwise create dislocations under the effect of the accumulated strain. The introduction of GaAsN SB layers allows increasing the light absorption in the QD region by multi-stacking more than 100 QD layers. The photo-generated current density (JL) versus VOC was measured under varied concentrated light intensity and temperature. We found that the VOC of the cell at 20 K is limited by the bandgap of the GaAsN barriers, which has important consequences regarding IBSC bandgap engineering that are also discussed in this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a strong and growing worldwide research on exploring renewable energy resources. Solar energy is the most abundant, inexhaustible and clean energy source, but there are profound material challenges to capture, convert and store solar energy. In this work, we explore 3C-SiC as an attractive material towards solar-driven energy conversion applications: (i) Boron doped 3C-SiC as candidate for an intermediate band photovoltaic material, and (ii) 3C-SiC as a photoelectrode for solar-driven water splitting. Absorption spectrum of boron doped 3C-SiC shows a deep energy level at ~0.7 eV above the valence band edge. This indicates that boron doped 3C-SiC may be a good candidate as an intermediate band photovoltaic material, and that bulk like 3C-SiC can have sufficient quality to be a promising electrode for photoelectrochemical water splitting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the radial dependence of the energy deposition of the secondary electron generated by swift proton beams incident with energies T = 50 keV–5 MeV on poly(methylmethacrylate) (PMMA). Two different approaches have been used to model the electronic excitation spectrum of PMMA through its energy loss function (ELF), namely the extended-Drude ELF and the Mermin ELF. The singly differential cross section and the total cross section for ionization, as well as the average energy of the generated secondary electrons, show sizeable differences at T ⩽ 0.1 MeV when evaluated with these two ELF models. In order to know the radial distribution around the proton track of the energy deposited by the cascade of secondary electrons, a simulation has been performed that follows the motion of the electrons through the target taking into account both the inelastic interactions (via electronic ionizations and excitations as well as electron-phonon and electron trapping by polaron creation) and the elastic interactions. The radial distribution of the energy deposited by the secondary electrons around the proton track shows notable differences between the simulations performed with the extended-Drude ELF or the Mermin ELF, being the former more spread out (and, therefore, less peaked) than the latter. The highest intensity and sharpness of the deposited energy distributions takes place for proton beams incident with T ~ 0.1–1 MeV. We have also studied the influence in the radial distribution of deposited energy of using a full energy distribution of secondary electrons generated by proton impact or using a single value (namely, the average value of the distribution); our results show that differences between both simulations become important for proton energies larger than ~0.1 MeV. The results presented in this work have potential applications in materials science, as well as hadron therapy (due to the use of PMMA as a tissue phantom) in order to properly consider the generation of electrons by proton beams and their subsequent transport and energy deposition through the target in nanometric scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"NSF 80-316."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this research program is to investigate the photoelectronic properties of zinc phosphide (Zn₃P₂ in single crystal form, in thin-film form, and in heterojunctions in which Zn₃P₂ forms one of the elements. This research will be directed toward understanding the role of crystalline defects and impurities in Zn₃P₂, the nature of the electronic charge transport in single crystal and thin-film material, and the properties of photovoltaic heterojunctions involving Zn₃P₂. The scope of the program extends from basic investigations of materials properties on single crystals to the preparation and characterization of all-thin-film heterojunction divices. One of the principal motivations behind this research program is the realization that Zn₃P₂ is a relatively uninvestigated yet ideal component for photovoltaic heterojunction use in solar energy conversion. The proposed program will concentrate on the basic materials problems involved with Zn₃P₂, providing the kind of information needed for other more developmental programs directed toward actual practical cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Part of the National Science Foundation new laboratory equipment development project; NSF grant 17701."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Committee chairman: James D. Watkins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.