Photoelectronic properties of zinc phosphide crystals, films and heterojunctions : quarterly progress report no. 6 for the period July 1 - September 30, 1980 /
Data(s) |
24/12/1980
|
---|---|
Resumo |
The purpose of this research program is to investigate the photoelectronic properties of zinc phosphide (Zn₃P₂ in single crystal form, in thin-film form, and in heterojunctions in which Zn₃P₂ forms one of the elements. This research will be directed toward understanding the role of crystalline defects and impurities in Zn₃P₂, the nature of the electronic charge transport in single crystal and thin-film material, and the properties of photovoltaic heterojunctions involving Zn₃P₂. The scope of the program extends from basic investigations of materials properties on single crystals to the preparation and characterization of all-thin-film heterojunction divices. One of the principal motivations behind this research program is the realization that Zn₃P₂ is a relatively uninvestigated yet ideal component for photovoltaic heterojunction use in solar energy conversion. The proposed program will concentrate on the basic materials problems involved with Zn₃P₂, providing the kind of information needed for other more developmental programs directed toward actual practical cells. "Work performed under Contract No. AC02-77CH00178"--Cover. "Subcontract No. XJ-9-8031-1." Includes bibliographical references (page 16). The purpose of this research program is to investigate the photoelectronic properties of zinc phosphide (Zn₃P₂ in single crystal form, in thin-film form, and in heterojunctions in which Zn₃P₂ forms one of the elements. This research will be directed toward understanding the role of crystalline defects and impurities in Zn₃P₂, the nature of the electronic charge transport in single crystal and thin-film material, and the properties of photovoltaic heterojunctions involving Zn₃P₂. The scope of the program extends from basic investigations of materials properties on single crystals to the preparation and characterization of all-thin-film heterojunction divices. One of the principal motivations behind this research program is the realization that Zn₃P₂ is a relatively uninvestigated yet ideal component for photovoltaic heterojunction use in solar energy conversion. The proposed program will concentrate on the basic materials problems involved with Zn₃P₂, providing the kind of information needed for other more developmental programs directed toward actual practical cells. Mode of access: Internet. |
Formato |
bib |
Identificador | |
Idioma(s) |
eng |
Publicador |
Golden, Colorado : Solar Energy Research Institute, Department of Energy, |
Direitos |
Items in this record are available as Public Domain, Google-digitized. View access and use profile at http://www.hathitrust.org/access_use#pd-google. Please see individual items for rights and use statements. |
Palavras-Chave | #Solar energy. #Solar cells #Photovoltaic cells #Solar energy. #Photovoltaic cells #Solar cells |
Tipo |
text |