956 resultados para Aluminum alloy 2524


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transitions of E0 ,E0 +A0, and E+ in dilute GaAs(1-x) Nx alloys with x = 0.10% ,0.22% ,0.36% ,and 0.62% are observed by micro-photoluminescence. Resonant Raman scattering results further confirm that they are from the intrinsic emissions in the studied dilute GaAsN alloys rather than some localized exciton emissions in the GaAsN alloys. The results show that the nitrogen-induced E E+ and E0 + A0 transitions in GaAsN alloys intersect at a nitrogen content of about 0.16%. It is demonstrated that a small amount of isoelectronic doping combined with micro-photoluminescence allows direct observation of above band gap transitions that are not usually accessible in photoluminescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to improve crystal quality for growth of quaternary InAlGaN, a series of InAlGaN films were grown on GaN buffer layer under different growth temperatures and carrier gases by low-pressure metal-organic vapor phase epitaxy. Energy dispersive spectroscopy (EDS) was employed to measure the chemical composition of the quaternary, high resolution X-ray diffraction (HRXRD) and photoluminescence (PL) technique were used to characterize structural and optical properties of the epilayers, respectively. The PL spectra of InAlGaN show with and without the broad-deep level emission when only N2 and a N2+H2 mixture were used as carrier gas, respectively. At pressure of 1.01×104 Pa and with mixed gases of nitrogen and hydrogen as carrier gas, different alloy compositions of the films were obtained by changing the growth temperature while keeping the fluxes of precursors of indium (In), aluminum (Al), gallium (Ga) and nitrogen (N2) constant. A combination of HRXRD and PL measurements enable us to explore the relative optimum growth parameters-growth temperature between 850℃ and 870℃,using mixed gas of N2+H2 as carrier gas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaNAs alloy is grown by metalorganic chemical vapor deposition (MOCVD) using dimethylhydrazine (DMHy) as the nitrogen precursor. High-resolution X-ray diffraction (HRXRD) and secondary ion mass spectrometry (SIMS) are combined in determining the nitrogen contents in the samples. Room temperature photoluminescence (RTPL) measurement is also used in characterizing. The influence of different Ga precursors on GaNAs quality is investigated. Samples grown with triethylgallium (TEGa) have better qualities and less impurity contamination than those with trimethylgallium (TMGa). Nitrogen content of 5.688% is achieved with TEGa. The peak wavelength in RTPL measurement is measured to be 1278.5nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

集成光电子学国家重点实验室基金,国家863计划,国家自然科学基金,中科院项目

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of thermal annealing on the Raman spectrum of Si0.33Ge0.67 alloy grown on Si (100) by molecular beam epitaxy is investigated in the temperature range of 550-800 degrees C. For annealing below 700 degrees C, interdiffusion at the interface is negligible and the residual strain plays the dominant role in the Raman shift. The strain-shift coefficients for Si-Ge and Ge-Ge phonon modes are determined to be 915 +/- 215 cm(-1) and 732 +/- 117 cm(-1), respectively. For higher temperature annealing, interdiffusion is significant and strongly affects the Raman shift and the spectral shape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoluminescence from ZnS1-xTex alloy with 0 < x < 0.3 was investigated under hydrostatic pressure up to 7 GPa. Two peaks were observed in the alloys with x < 0.01, which are related to excitons bound to isolated Te isoelectronic impurities (Te-1 centers) and Te pairs (Te-2 centers), respectively. Only the Te-2 related emissions were observed in the alloys with 0.01 < x < 0.03. The emissions in the alloys with 0.03 < x < 0.3 are attributed to the excitons bound to the Te-n (n greater than or equal to 3) cluster centers. The pressure coefficient of the Te-1 related peak is 89(4) meV/GPa, about 40% larger than that of the band gap of ZnS. On the other hand, the pressure coefficient of the Te-2 related emissions is only 52(4) meV/GPa, about 15% smaller than that of the ZnS band gap. A simple Koster-Slater model has been used to explain the different pressure behavior of the Te-1 and Te-2 centers. The pressure coefficient of the Te-3 centers is 62(2) meV/GPa. Then the pressure coefficients of the Te-n centers decrease rapidly with further increasing Te composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a low-temperature (LT) growth technique. Even with Ge fraction x upto 90%, the total thickness of fully relaxed GexSi1-x buffers can he reduced to 1.7 mu m with dislocation density lower than 5 x 10(6) cm(-2). The surface roughness is no more than 6 nm. The strain relaxation is quite inhomogeneous From the beginning. Stacking faults generate and form the mismatch dislocations in the interface of GeSi/LT-Si. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polycrystalline silicon thin film was fabricated on glass substrate by means of aluminum induced crystallization (AIC). Al and alpha-Si layers were deposited by magnetron sputtering respectively and annealed at 480A degrees C for 1 h to realize layer exchange. The polycrystalline silicon thin film was continuous and strongly (111) oriented. By analyzing the structure variation of the oxidation membrane and lattice mismatch between gamma-Al2O3 and Si, it was concluded that aluminum promoted the formation of (111) oriented silicon nucleus by controlling the orientation of gamma-Al2O3, which was formed at the early stage of annealing.