992 resultados para 270601 Animal Physiology - Biophysics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Administration of Na(+)/H(+) exchange isoform-1 (NHE-1) inhibitors before ischemia has been shown to attenuate myocardial infarction in several animal models of ischemia-reperfusion injury. However, controversy still exists as to the efficacy of NHE-1 inhibitors in protection of myocardial infarction when administered at the onset of reperfusion. Furthermore, the efficacy of NHE-1 inhibition in protection of skeletal muscle from infarction (necrosis) has not been studied. This information has potential clinical applications in prevention or salvage of skeletal muscle from ischemia-reperfusion injury in elective and trauma reconstructive surgery. The objective of this research project is to test our hypothesis that the NHE-1 inhibitor cariporide is effective in protection of skeletal muscle from infarction when administered at the onset of sustained ischemia or reperfusion and to study the mechanism of action of cariporide. In our studies, we observed that intravenous administration of cariporide 10 min before ischemia (1 or 3 mg/kg) or reperfusion (3 mg/kg) significantly reduced infarction in pig latissimus dorsi muscle flaps compared with the control, when these muscle flaps were subjected to 4 h of ischemia and 48 h of reperfusion (P <0.05; n = 5 pigs/group). Both preischemic and postischemic cariporide treatment (3 mg/kg) induced a significant decrease in muscle myeloperoxidase activity and mitochondrial-free Ca(2+) content and a significant increase in muscle ATP content within 2 h of reperfusion (P <0.05; n = 4 pigs/group). Preischemic and postischemic cariporide treatment (3 mg/kg) also significantly inhibited muscle NHE-1 protein expression within 2 h of reperfusion after 4 h of ischemia, compared with the control (P <0.05; n = 3 pigs/group). These observations support our hypothesis that cariporide attenuates skeletal muscle infarction when administered at the onset of ischemia or reperfusion, and the mechanism involves attenuation of neutrophil accumulation and mitochondrial-free Ca(2+) overload and preservation of ATP synthesis in the early stage of reperfusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ischemia-reperfusion (I/R) injury causes skeletal muscle infarction and ischemic preconditioning (IPC) augments ischemic tolerance in animal models. To date, this has not been demonstrated in human skeletal muscle. This study aimed to develop an in vitro model to investigate the efficacy of simulated IPC in human skeletal muscle. Human skeletal muscle strips were equilibrated in oxygenated Krebs-Henseleit-HEPES buffer (37 degrees C). Aerobic and reperfusion phases were simulated by normoxic incubation and reoxygenation, respectively. Ischemia was simulated by hypoxic incubation. Energy store, cell viability, and cellular injury were assessed using ATP, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), and lactate dehydrogenase (LDH) assays, respectively. Morphological integrity was assessed using electron microscopy. Studies were designed to test stability of the preparation (n = 5-11) under normoxic incubation over 24 h; the effect of 1, 2, 3, 4, or 6 h hypoxia followed by 2 h of reoxygenation; and the protective effect of hypoxic preconditioning (HPC; 5 min of hypoxia/5 min of reoxygenation) before 3 h of hypoxia/2 h of reoxygenation. Over 24 h of normoxic incubation, muscle strips remained physiologically intact as assessed by MTT, ATP, and LDH assays. After 3 h of hypoxia/2 h of reoxygenation, MTT reduction levels declined to 50.1 +/- 5.5% (P <0.05). MTT reduction levels in HPC (82.3 +/- 10.8%) and normoxic control (81.3 +/- 10.2%) groups were similar and higher (P <0.05) than the 3 h of hypoxia/2 h of reoxygenation group (45.2 +/- 5.8%). Ultrastructural morphology was preserved in normoxic and HPC groups but not in the hypoxia/reoxygenation group. This is the first study to characterize a stable in vitro model of human skeletal muscle and to demonstrate a protective effect of HPC in human skeletal muscle against hypoxia/reoxygenation-induced injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-affinity nitrate transport was examined in intact root hair cells of Arabidopsis thaliana using electrophysiological recordings to characterise the response of the plasma membrane to NO3-challenge and to quantify transport activity. The NO3--associated membrane current was determined using a three-electrode voltage clamp to bring membrane voltage under experimental control and to compensate for current dissipation along the longitudinal cell axis. Nitrate transport was evident in the roots of seedlings grown in the absence of a nitrogen source, but only 4-6 days postgermination. In 6-day-old seedlings, additions of 5-100 μm NO3-to the bathing medium resulted in membrane depolarizations of 8-43 mV, and membrane voltage (Vm) recovered on washing NO3-from the bath. Voltage clamp measurements carried out immediately before and following NO3-additions showed that the NO3--evoked depolarizations were the consequence of an inward-directed current that appeared across the entire range of accessible voltages (-300 to +50 mV). Both membrane depolarizations and NO3--evoked currents recorded at the free-running voltage displayed quasi-Michaelian kinetics, with apparent values for Km of 23 ± 6 and 44 ± 11 μm, respectively and, for the current, a maximum of 5.1 ± 0.9 μA cm-2. The NO3-current showed a pronounced voltage sensitivity within the normal physiological range between -250 and -100 mV, as could be demonstrated under voltage clamp, and increasing the bathing pH from 6.1 to 7.4-8.0 reduced the current and the associated membrane depolarizations 3- to 8-fold. Analyses showed a well-defined interaction between the kinetic variables of membrane voltage, pHo and [NO3-]o. At a constant pHo of 6.1, depolarization from -250 to -150 mV resulted in an approximate 3-fold reduction in the maximum current but a 10% rise in the apparent affinity for NO3-. By contrast, the same depolarization effected an approximate 20% fall in the Km for transport as a function in [H+]o. These, and additional characteristics of the transport current implicate a carrier cycle in which NO3-binding is kinetically isolated from the rate-limiting step of membrane charge transit, and they indicate a charge-coupling stoichiometry of 2(H+) per NO3-anion transported across the membrane. The results concur with previous studies showing a high-affinity NO3-transport system in Arabidopsis that is inducible following a period of nitrogen-limiting growth, but they underline the importance of voltage as a kinetic factor controlling NO3-transport at the plant plasma membrane. © 1995 Springer-Verlag New York Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Premature infants are at risk for adverse motor outcomes, including cerebral palsy and developmental coordination disorder. The purpose of this study was to examine the relationship of antenatal, perinatal, and postnatal risk factors for abnormal development of the corticospinal tract, the major voluntary motor pathway, during the neonatal period. In a prospective cohort study, 126 premature neonates (24-32 weeks' gestational age) underwent serial brain imaging near birth and at term-equivalent age. With diffusion tensor tractography, mean diffusivity and fractional anisotropy of the corticospinal tract were measured to reflect microstructural development. Generalized estimating equation models examined associations of risk factors on corticospinal tract development. The perinatal risk factor of greater early illness severity (as measured by the Score for Neonatal Acute Physiology-II [SNAP-II]) was associated with a slower rise in fractional anisotropy of the corticospinal tract (P = 0.02), even after correcting for gestational age at birth and postnatal risk factors (P = 0.009). Consistent with previous findings, neonatal pain adjusted for morphine and postnatal infection were also associated with a slower rise in fractional anisotropy of the corticospinal tract (P = 0.03 and 0.02, respectively). Lessening illness severity in the first hours of life might offer potential to improve motor pathway development in premature newborns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Ecologists are debating the relative role of deterministic and stochastic determinants of community structure. Although the high diversity and strong spatial structure of soil animal assemblages could provide ecologists with an ideal ecological scenario, surprisingly little information is available on these assemblages.
2. We studied species-rich soil oribatid mite assemblages from a Mediterranean beech forest and a grassland. We applied multivariate regression approaches and analysed spatial autocorrelation at multiple spatial scales using Moran's eigenvectors. Results were used to partition community variance in terms of the amount of variation uniquely accounted for by environmental correlates (e.g. organic matter) and geographical position. Estimated neutral diversity and immigration parameters were also applied to a soil animal group for the first time to simulate patterns of community dissimilarity expected under neutrality, thereby testing neutral predictions.
3. After accounting for spatial autocorrelation, the correlation between community structure and key environmental parameters disappeared: about 40% of community variation consisted of spatial patterns independent of measured environmental variables such as organic matter. Environmentally independent spatial patterns encompassed the entire range of scales accounted for by the sampling design (from tens of cm to 100 m). This spatial variation could be due to either unmeasured but spatially structured variables or stochastic drift mediated by dispersal. Observed levels of community dissimilarity were significantly different from those predicted by neutral models.
4. Oribatid mite assemblages are dominated by processes involving both deterministic and stochastic components and operating at multiple scales. Spatial patterns independent of the measured environmental variables are a prominent feature of the targeted assemblages, but patterns of community dissimilarity do not match neutral predictions. This suggests that either niche-mediated competition or environmental filtering or both are contributing to the core structure of the community. This study indicates new lines of investigation for understanding the mechanisms that determine the signature of the deterministic component of animal community assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dioxin contamination of the food chain typically occurs when cocktails of combustion residues or polychlorinated biphenyl (PCB) containing oils become incorporated into animal feed. These highly toxic compounds are bioaccumulative with small amounts posing a major health risk. The ability to identify animal exposure to these compounds prior to their entry into the food chain may be an invaluable tool to safeguard public health. Dioxin-like compounds act by a common mode of action and this suggests that markers or patterns of response may facilitate identification of exposed animals. However, secondary co-contaminating compounds present in typical dioxin sources may affect responses to compounds. This study has investigated for the first time the potential of a metabolomics platform to distinguish between animals exposed to different sources of dioxin contamination through their diet. Sprague-Dawley rats were given feed containing dioxin-like toxins from hospital incinerator soot, a common PCB oil standard and pure 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (normalized at 0.1 µg/kg TEQ) and acquired plasma was subsequently biochemically profiled using ultra high performance liquid chromatography (UPLC) quadropole time-of-flight-mass spectrometry (QTof-MS). An OPLS-DA model was generated from acquired metabolite fingerprints and validated which allowed classification of plasma from individual animals into the four dietary exposure study groups with a level of accuracy of 97-100%. A set of 24 ions of importance to the prediction model, and which had levels significantly altered between feeding groups, were positively identified as deriving from eight identifiable metabolites including lysophosphatidylcholine (16:0) and tyrosine. This study demonstrates the enormous potential of metabolomic-based profiling to provide a powerful and reliable tool for the detection of dioxin exposure in food-producing animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although Wnt signaling is known to mediate multiple biological and pathological processes, its association with diabetic retinopathy (DR) has not been established. Here we show that retinal levels and nuclear translocation of beta-catenin, a key effector in the canonical Wnt pathway, were increased in humans with DR and in three DR models. Retinal levels of low-density lipoprotein receptor-related proteins 5 and 6, coreceptors of Wnts, were also elevated in the DR models. The high glucose-induced activation of beta-catenin was attenuated by aminoguanidine, suggesting that oxidative stress is a direct cause for the Wnt pathway activation in diabetes. Indeed, Dickkopf homolog 1, a specific inhibitor of the Wnt pathway, ameliorated retinal inflammation, vascular leakage, and retinal neovascularization in the DR models. Dickkopf homolog 1 also blocked the generation of reactive oxygen species induced by high glucose, suggesting that Wnt signaling contributes to the oxidative stress in diabetes. These observations indicate that the Wnt pathway plays a pathogenic role in DR and represents a novel therapeutic target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The understanding of how mutations of the cystic fibrosis gene results in recurrent infection and the development of bronchiectasis is now well established. This review examines aspects of lung pathophysiology specifically, abnormal mucociliary clearance, inflammation and infection which are the basis of the daily symptoms encountered by people with cystic fibrosis. Other components of the lung epithelium and their potential contribution to cystic fibrosis disease are discussed. Therapeutic interventions which aim to target abnormal mucociliary clearance are summarized. © 2011 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: In experimental models of retinopathy of prematurity (ROP), a vasoproliferative disorder of the retina, retinal lesions are usually assessed by morphological examination. However, studies suggest that the polyamine system may be useful in monitoring proliferation processes. For this reason, polyamine concentrations in rat erythrocytes (RBC) and the regulation of polyamine system in rat eyes under the conditions relevant to ROP were investigated. METHODS: Newborn Wistar rats were reared in room air (control) or exposed first to hyperoxia (60% or 80% oxygen, 2 weeks) and then to normoxia (relative hypoxia, 1 or 2 weeks). Blood was collected from orbital vessels at 2 weeks of age and before death. Polyamine system-related enzyme activities were measured in retina and lens with radioassays. Polyamines were quantified by fluorometry after extraction, dansylation and HPLC separation. RESULTS: Oxygen (80% only) significantly decreased RBC polyamine concentrations, which then markedly increased after rats were transferred for a week to normal air, suggesting retardation of growth processes and compensatory stimulation, respectively. However, polyamine system changes in the rat eye were not so pronounced. Enzyme activities and polyamine concentrations tended to be lower in retina after hyperoxia and were only slightly higher, with the exception of ornithine decarboxylase, after a subsequent 1 week of normoxia. In litters subjected to normoxia for longer periods no changes were found. CONCLUSION: The transient and short-lived alteration in polyamine metabolism, especially in the eye, suggests that exposure of newborn rats to high oxygen supplementation followed by normoxia does not necessarily result in marked retinopathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonconsumptive or trait-mediated effects of predators on their prey often outweigh density-mediated interactions where predators consume prey. For instance, predator presence can alter prey behaviour, physiology, morphology and/or development. Despite a burgeoning literature, our ability to identify general patterns in prey behavioural responses may be influenced by the inconsistent methodologies of predator cue experiments used to assess trait-mediated effects. We therefore conducted a meta-analysis to highlight variables (e.g. water type, predator husbandry, exposure time) that may influence invertebrate prey's behavioural responses to fish predator cues. This revealed that changes in prey activity and refuge use were remarkably consistent overall, despite wide differences in experimental methodologies. Our meta-analysis shows that invertebrates altered their behaviour to predator cues of both fish that were fed the focal invertebrate and those that were fed other prey types, which suggests that invertebrates were not responding to specific diet information in the fish cues. Invertebrates also altered their behaviour regardless of predator cue addition regimes and fish satiation levels. Cue intensity and exposure time did not have significant effects on invertebrate behaviour. We also highlight that potentially confounding factors, such as parasitism, were rarely recorded in sufficient detail to assess the magnitude of their effects. By examining the likelihood of detecting trait-mediated effects under large variations in experimental design, our study demonstrates that trait-mediated effects are likely to have pervasive and powerful influences in nature.