1000 resultados para quantum fluctuation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gain saturation behaviors and noise figure are numerically analyzed for quantum-dot semiconductor optical amplifiers (QD-SOAs). The carrier and photon distributions in the longitudinal direction as well as the photon energy dependent facet reflectivity are accounted in the rate equations, which are solved with output amplified spontaneous emission spectrum as iterative variables. The longitudinal distributions of the occupation probabilities and spectral-hole burning are presented for electrons in the excited and ground states of quantum dots. The saturation output power 19.7 dBm and device gain 20.6 dB are obtained for a QD-SOA with the cavity length of 6 rum at the bias current of 500 mA. The influences of them electron intradot relaxation time and the QD capture time on the gain spectrum are simulated with the relaxation time of 1, 30, and 60 ps and capture time of 1, 5, and 10 ps. The noise figure as low as 3.5 dB is expected due to the strong polarization sensitive spontaneous emission. The characteristics of gain saturation and noise figure versus input signal power for QD-SOAs are similar to that of semiconductor. linear optical amplifiers with gain clamping by vertical laser fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hexagonal nanopillars with a single InGaAs/GaAs quantum well (QW) were fabricated on a GaAs (111) B substrate by selective-area metal-organic vapor phase epitaxy. The standard deviations in diameter and height of the nanopillars are about 2% and 5%, respectively. Zincblende structure and rotation twins were identified in both the GaAs and the InGaAs layers by electron diffraction. The excitation-power-density-dependent micro-photoluminescence (mu-PL) of the nanopillars was measured at 4.2, 50, 100 and 150 K. It was shown that, with increasing excitation power density, the mu-PL peak's positions shift to a higher energy, and their intensity and width increase, which were rationalized using a model that includes the effects of piezoelectricity, photon-screening and band-filling. It was also revealed that the rotation twins significantly reduce the diffusion length of the carriers in the nanopillars, compared to that in the regular semiconductors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors report the optical characteristics of GaSb/InAs/GaAs self-assembled heterojunction quantum dots (QDs). With increasing GaSb deposition, the room temperature emission wavelength can be extended to 1.56 mu m. The photoluminescence mechanism is considered to be a type-II transition with electrons confined in InAs and holes in GaSb.(C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a quantum dot (QD) ensemble structure in which the in-plane arrangements of the dots are in a hexagonal way while the dots are also vertically aligned. Such a distinct lateral ordering of QDs is achieved on a planar GaAs(l 0 0) rather than on a prepatterned substrate by strain-mediated multilayer vertical stacking of the QDs. The analysis indicates that the strain energy of the lateral island-island interaction is minimum for arrangement of the hexagonal ordering. The ordered dots demonstrate strong photoluminescence (PL) emission at room temperature (RT) and the full width at half maximum of PL peak at RT is only 50 meV. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the effects of accumulated strain by stacking on the surface and optical properties of stacked 1.3 mu m InAs/GaAs quantum dot (QD) structures grown by MOCVD. It is found that the surface of the stacked QD structures becomes more and more undulated with stacking, due to the increased strain in the stacked QD structures with stacking. The photoluminescence intensity from the QD structures first increases as the stacking number increases from 1 to 3 and then dramatically decreases as it further increases, implying a significant increase in the density of crystal defects in the stacked QD structures due to the accumulated strain. Furthermore, we demonstrate that the strain can be reduced by simply introducing annealing steps just after growing the GaAs spacers during the deposition of the stacked QD structures, leading to significant improvement in the surface and optical properties of the structures. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study quantum teleportation via a two-qubit Heisenberg XXZ, chain under an inhomogeneous magnetic field. We first consider entanglement teleportation, and then focus on the teleportation fidelity under different conditions. The effects of anisotropy and the magnetic field, both uniform and inhomogeneous, are discussed. We also find that, though entanglement teleportation does require an entangled quantum channel, a nonzero critical value of minimum entanglement is not always necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the growth temperature on the surface and interface quality for the GaN/AlN multiquantum well (MQW) layer grown by metal-organic vapour chemical deposition is investigated. The obtained GaN/AlN MQW structure is almost coherent to the underlying AlGaN layer at improved growth conditions. With a relatively low growth temperature, the GaN/AlN MQW growth rate increases, the surface roughness reduces considerably and no macro steps are observed, resulting in a better periodicity of MQW.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the dependence of the differential reflection on the structure parameters of quantum dot (QD) heterostructures in pump-probe reflection measurements by both numerical simulations based on the finite-difference time-domain technique and theoretical calculations based on the theory of dielectric films. It is revealed that the value and sign of the differential reflection strongly depend on the thickness of the cap layer and the QD layer. In addition, a comparison between the carrier dynamics in undoped and p-doped InAs/GaAs QDs is carried out by pump-probe reflection measurements. The carrier capture time from the GaAs barrier into the InAs wetting layer and that from the InAs wetting layer into the InAs QDs are extracted by appropriately fitting differential reflection spectra. Moreover, the dependence of the carrier dynamics on the injected carrier density is identified. A detailed analysis of the carrier dynamics in the undoped and p-doped QDs based on the differential reflection spectra is presented, and its difference with that derived from the time-resolved photoluminescence is discussed. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure and Lande electron g-factors of manganese-doped HgTe quantum spheres are investigated, in the framework of the eight-band effective-mass model and the mean-field approximation. It is found that the electronic structure evolves continuously from the zero-gap configuration to an open-gap configuration with decreasing radius. The size dependence of electron g-factors is calculated with different Mn-doped effective concentration, magnetic field, and temperature values, respectively. It is found that the variations of electron g-factors are quite different for small and large quantum spheres, due to the strong exchange-induced interaction and spin-orbit coupling in the narrow-gap DMS nanocrystals. The electron g-factors are zero at a critical point of spherical radius R-c; however, by modulating the nanocrystal size their absolute values can be turned to be even 400 times larger than those in undoped cases. Copyright (c) EPLA, 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Very low threshold current density InGaAs/ GaAs quantum well laser diodes grown by molecular beam epitaxy on InGaAs metamorphic buffers are reported. The lasing wavelength of the ridge waveguide laser diode with cavity length of 1200 mm is centred at 1337.2 nm; the threshold current density is 205 A/cm(2) at room temperature under continuous-wave operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Room-temperature operation of cw GaN based multi-quantum-well laser diodes (LDs) is demonstrated. The LD structure is grown on a sapphire (0001) substrate by metalorganic chemical vapour deposition. A 2.5 mu m x 800 mu m ridge waveguide structure is fabricated. The electrical and optical characteristics of the laser diode under direct current injection at room temperature are investigated. The threshold current and voltage of the LD under cw operation are 110mA and 10.5V, respectively. Thermal induced series resistance decrease and emission wavelength red-shift are observed as the injection current is increased. The full width at half maximum for the parallel and perpendicular far field pattern (FFP) are 12 degrees and 32 degrees, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1689-nm diode lasers used in medical apparatus have been fabricated and characterized. The lasers had pnpn InP current confinement structure, and the active region consisted of 5 pairs of InGaAs quantum wells and InGaAsP barriers. Stripe width and cavity length of the laser were 1.8 and 300 pm, respectively. After being cavity coated. and transistor outline (TO) packaged, the lasers showed high performance in practice. The threshold current was about 13 +/- 4 mA, the operation current and the lasing spectrum were about 58 6 mA and 1689 +/- 6 nm at 6-mW output power, respectively. Moreover, the maximum output power of the lasers was above 20 mW.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically investigate the Rashba spin-orbit interaction in InAs/GaSb quantum wells (QWs). We find that the Rashba spin-splitting (RSS) sensitively depends on the thickness of the InAs layer. The RSS exhibits nonlinear behavior for narrow InAs/GaSb QWs and the oscillating feature for wide InAs/GaSb QWs. The nonlinear and oscillating behaviors arise from the weakened and enhanced interband coupling. The RSS also show asymmetric features respect to the direction of the external electric field. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field electron emission (FE) from an ultrathin multilayer planar cold cathode (UMPC) including a quantum well structure has been both experimentally and theoretically investigated. We found that by tuning the energy levels of UMPC, the FE characteristic can be evidently improved, which is unexplained by conventional FE mechanism. FE emission mechanism, dependent on the quantum structure effect, which supplies a favorable location of electron emission and enhances tunneling ability, has been presented to expound the notable amelioration. An approximate formula, brought forward, can predict the quantum FE enhancement, in which the theoretical prediction is close to the experimental result. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rashba spin splitting of the minibands of coupled InAs/GaAs pyramid quantum dots is investigated using the k center dot p method and valence force field model. The Rashba splitting of the two dimensional miniband in the lateral directions is found due to the structure inversion asymmetry in the vertical direction while the miniband in the vertical direction has no Rashba spin splitting. As the space between dots increases, the Rashba coefficients decrease and the conduction-band effective mass increases. This Rashba spin splitting of the minibands will significantly affect the spin transport properties between quantum dots. (C) 2008 American Institute of Physics.