979 resultados para gene transcription


Relevância:

30.00% 30.00%

Publicador:

Resumo:

RUNX2 is an essential transcription factor required for skeletal development and cartilage formation. Haploinsufficiency of RUNX2 leads to cleidocranial displaysia (CCD) a skeletal disorder characterised by gross dysgenesis of bones particularly those derived from intramembranous bone formation. A notable feature of the RUNX2 protein is the polyglutamine and polyalanine (23Q/17A) domain coded by a repeat sequence. Since none of the known mutations causing CCD characterised to date map in the glutamine repeat region, we hypothesised that Q-repeat mutations may be related to a more subtle bone phenotype. We screened subjects derived from four normal populations for Q-repeat variants. A total of 22 subjects were identified who were heterozygous for a wild type allele and a Q-repeat variant allele: (15Q, 16Q, 18Q and 30Q). Although not every subject had data for all measures, Q-repeat variants had a significant deficit in BMD with an average decrease of 0.7SD measured over 12 BMD-related parameters (p = 0.005). Femoral neck BMD was measured in all subjects (−0.6SD, p = 0.0007). The transactivation function of RUNX2 was determined for 16Q and 30Q alleles using a reporter gene assay. 16Q and 30Q alleles displayed significantly lower transactivation function compared to wild type (23Q). Our analysis has identified novel Q-repeat mutations that occur at a collective frequency of about 0.4%. These mutations significantly alter BMD and display impaired transactivation function, introducing a new class of functionally relevant RUNX2 mutants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The PHYTOCHROME AND FLOWERING TIME1 gene encoding the MEDIATOR25 (MED25) subunit of the eukaryotic Mediator complex is a positive regulator of jasmonate (JA)-responsive gene expression in Arabidopsis (Arabidopsis thaliana). Based on the function of the Mediator complex as a bridge between DNA-bound transcriptional activators and the RNA polymerase II complex, MED25 has been hypothesized to function in association with transcriptional regulators of the JA pathway. However, it is currently not known mechanistically how MED25 functions to regulate JA-responsive gene expression. In this study, we show that MED25 physically interacts with several key transcriptional regulators of the JA signaling pathway, including the APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription factors OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF59 and ERF1 as well as the master regulator MYC2. Physical interaction detected between MED25 and four group IX AP2/ERF transcription factors was shown to require the activator interaction domain of MED25 as well as the recently discovered Conserved Motif IX-1/EDLL transcription activation motif of MED25-interacting AP2/ERFs. Using transcriptional activation experiments, we also show that OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF59- and ERF1-dependent activation of PLANT DEFENSIN1.2 as well as MYC2-dependent activation of VEGETATIVE STORAGE PROTEIN1 requires a functional MED25. In addition, MED25 is required for MYC2-dependent repression of pathogen defense genes. These results suggest an important role for MED25 as an integrative hub within the Mediator complex during the regulation of JA-associated gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to determine the effects of high-glucose, high-fructose and high-sucrose diets on weight gain, liver lipid metabolism and gene expression of proteins involved with hepatic fat metabolism. Rats were fed a diet containing either 60% glucose, 60% fructose, 60% sucrose, or a standard chow for 28 days. Results indicated that high-fructose and high-sucrose diets were associated with higher mRNA levels of gene transcripts involved with fat synthesis; ACC, FAS and ChREBP, with no change in SREBP-1C mRNA. The protein level of ChREBP and SREBP1c was similar in liver homogenates from all groups, but were higher in nuclear fractions from the liver of high-fructose and high-sucrose fed rats. The mRNA level of gene transcripts involved with fat oxidation was the same in all three diets, whilst a high-fructose diet was associated with greater amount of mRNA of the fat transporter CD36. Despite the changes in mRNA of lipogenic proteins, the body weight of animals from each group was the same and the livers from rats fed high-fructose and high-sucrose diets did not contain more fat than control diet livers. In conclusion, changing the composition of the principal monosaccharide in the diet to a fructose containing sugar elicits changes in the level of hepatic mRNA of lipogenic and fat transport proteins and protein levels of their transcriptional regulators; however this is not associated with any changes in body weight or liver fat content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background:  The Kimba mouse carries a human vascular endothelial growth factor transgene causing retinal neovascularisation similar to that seen in diabetic retinopathy. Here, we examine the relationship between differential gene expression induced by vascular endothelial growth factor overexpression and the architectural changes that occur in the retinae of these mice.

Methods:  Retinal gene expression changes in juvenile and adult Kimba mice were assayed by microarray and compared with age-matched wild-type littermates. Transcription of selected genes was validated by quantitative real-time polymerase chain reaction. Protein translation was determined using immunohistochemistry and enzyme-linked immunosorbent assay.

Results:  Semaphorin 3C was upregulated, and nuclear receptor subfamily 2, group 3, member 3 (Nr2e3) was downregulated in juvenile Kimba mice. Betacellulin and endothelin 2 were upregulated in adults. Semaphorin 3C colocalized with glial fibrillary acidic protein in Müller cells of Kimba retinae at greater signal intensities than in wild type. Endothelin 2 colocalised to Müller cell end feet and extended into the outer limiting membrane. Endothelin receptor type B staining was most pronounced in the inner nuclear layer, the region containing Müller cell somata.

Conclusions:  An early spike in vascular endothelial growth factor induced significant long-term retinal neovascularisation associated with changes to the retinal ganglion, photoreceptor and Müller cells. Overexpression of vascular endothelial growth factor led to dysregulation of photoreceptor metabolism through differential expression of Nr2e3, endothelin 2, betacellulin and semaphorin 3C. Alterations in the expression of these genes may therefore play key roles in the pathological mechanisms that result from retinal neovascularisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined the effects of leptin treatment on the expression of key genes in adipocyte metabolism in Psammomys obesus (P. obesus), a polygenic rodent model of obesity. Lean and obese P. obesus were given three daily intraperitoneal injections of either saline or leptin (total of 45 mg/kg per day) for 7 days. In lean animals, leptin treatment led to reductions in food intake, body weight and fat mass. Pair-fed animals matched for the reduction in food intake of the lean leptin-treated animals demonstrated similar reductions in body weight and fat mass. In obese P. obesus, leptin treatment failed to have any effect on body weight or body fat mass, indicating leptin resistance. Lipoprotein lipase, hormone-sensitive lipase and peroxisome proliferator activated receptor gamma 2 mRNA levels were significantly reduced in lean leptin-treated animals, whereas pair-fed animals were similar to lean controls. Uncoupling protein 2 and glycerol phosphate acyltransferase were also reduced in the lean leptin-treated animals, but not significantly so. Obese animals did not show any gene expression changes after leptin treatment. In conclusion, high circulating concentrations of leptin in lean P. obesus resulted in decreased gene expression of a number of key lipid enzymes, independent of changes in food intake, body weight and fat mass. These effects of leptin were not found in obese P. obesus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the development of a microfluidic methodology, using RNA extraction and reverse transcription PCR, for investigating expression levels of cytochrome P450 genes. Cytochrome P450 enzymes are involved in the metabolism of xenobiotics, including many commonly prescribed drugs, therefore information on their expression is useful in both pharmaceutical and clinical settings. RNA extraction, from rat liver tissue or primary rat hepatocytes, was performed using a silica-based solid-phase extraction technique. Following elution of the purified RNA, amplification of target sequences for the housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the cytochrome P450 gene CYP1A2, was carried out using a one-step reverse transcription PCR. Once the microfluidic methodology had been optimized, analysis of control and 3-methylcholanthrene-induced primary rat hepatocytes were used to evaluate the system. As expected, GAPDH was consistently expressed, whereas CYP1A2 levels were found to be raised in the drug-treated samples. The proposed system offers an initial platform for development of both rapid throughput analyzers for pharmaceutical drug screening and point-of-care diagnostic tests to aid provision of drug regimens, which can be tailor-made to the individual patient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ovarian cancer remains a major cause of cancer mortality in women, with only limited understanding of disease aetiology at the molecular level. Granulocyte colony-stimulating factor (G-CSF) is a key regulator of both normal and emergency haematopoiesis, and is used clinically to aid haematopoietic recovery following ablative therapies for a variety of solid tumours including ovarian cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a transcriptional coactivator, PGC-1α contributes to the regulation of a broad range of metabolic processes in skeletal muscle health and disease; however, there is limited information about the genes it transcriptionally regulates. To identify new potential gene targets of PGC-1α regulation, mouse C2C12 myotubes were screened by microarray analysis following PGC-1α overexpression. Genes with an mRNA expression of 2.5-fold or more (P < 0.001) were identified. From these, further genes were singled out if they had no previous connection to PGC-1α regulation or characterization in skeletal muscle, or were unannotated with no known function. Following confirmation of their regulation by PGC-1α using qPCR analysis, eight genes were focused on for further investigation (Akr1b10, Rmnd1, 1110008P14Rik, 1700021F05Rik, Mtfp1, Mrm1, Oxnad1 and Cluh). Bioinformatics indicated a number of the genes were linked to a range of metabolic-related functions including fatty acid oxidation, oxido-reductase activity, and mitochondrial remodeling and transport. Treating C2C12 myotubes for 6 h with AICAR, a known activator of AMP kinase and inducer of Pgc-1α gene expression, increased the mRNA levels of both Pgc-1α (P < 0.001) and of Mtfp1, Mrm1, Oxnad1 and Cluh (P < 0.05). Screening of the promoter and intron 1 regions also revealed all genes to contain either a consensus or near consensus response elements for the estrogen-related receptor α (ERRα), a key transcription factor-binding partner of PGC-1α in skeletal muscle. Furthermore, knockdown of endogenous ERRα levels partially or completely blocked the induction of gene expression of all genes by PGC-1α, while each gene was significantly upregulated in the presence of a constitutively active form of ERRα (P < 0.05) except for Akr1b10. These findings provide preliminary evidence for the novel regulation of these genes by PGC-1α and its signaling pathway in skeletal muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interleukins 2 and 15 (IL-2 and IL-15) are highly differentiated but related cytokines with overlapping, yet also distinct functions, and established benefits for medical drug use. The present study identified a gene for an ancient third IL-2/15 family member in reptiles and mammals, interleukin 15-like (IL-15L), which hitherto was only reported in fish. IL-15L genes with intact open reading frames (ORFs) and evidence of transcription, and a recent past of purifying selection, were found for cattle, horse, sheep, pig and rabbit. In human and mouse the IL-15L ORF is incapacitated. Although deduced IL-15L proteins share only ~21 % overall amino acid identity with IL-15, they share many of the IL-15 residues important for binding to receptor chain IL-15Rα, and recombinant bovine IL-15L was shown to interact with IL-15Rα indeed. Comparison of sequence motifs indicates that capacity for binding IL-15Rα is an ancestral characteristic of the IL-2/15/15L family, in accordance with a recent study which showed that in fish both IL-2 and IL-15 can bind IL-15Rα. Evidence reveals that the species lineage leading to mammals started out with three similar cytokines IL-2, IL-15 and IL-15L, and that later in evolution (1) IL-2 and IL-2Rα receptor chain acquired a new and specific binding mode and (2) IL-15L was lost in several but not all groups of mammals. The present study forms an important step forward in understanding this potent family of cytokines, and may help to improve future strategies for their application in veterinarian and human medicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One serious side effect of statin drugs is skeletal muscle myopathy. Although the mechanism(s) responsible for statin myopathy remains to be fully determined, an increase in muscle atrophy gene expression and changes in mitochondrial content and/or function have been proposed to play a role. In this study, we examined the relationship between statin-induced expression of muscle atrophy genes, regulators of mitochondrial biogenesis, and markers of mitochondrial content in slow- (ST) and fast-twitch (FT) rat skeletal muscles. Male Sprague Dawley rats were treated with simvastatin (60 or 80 mg·kg(-1)·day(-1)) or vehicle control via oral gavage for 14 days. In the absence of overt muscle damage, simvastatin treatment induced an increase in atrogin-1, MuRF1 and myostatin mRNA expression; however, these were not associated with changes in peroxisome proliferator gamma co-activator 1 alpha (PGC-1α) protein or markers of mitochondrial content. Simvastatin did, however, increase neuronal nitric oxide synthase (nNOS), endothelial NOS (eNOS) and AMPK α-subunit protein expression, and tended to increase total NOS activity, in FT but not ST muscles. Furthermore, simvastatin induced a decrease in β-hydroxyacyl CoA dehydrogenase (β-HAD) activity only in FT muscles. These findings suggest that the statin-induced activation of muscle atrophy genes occurs independent of changes in PGC-1α protein and mitochondrial content. Moreover, muscle-specific increases in NOS expression and possibly NO production, and decreases in fatty acid oxidation, could contribute to the previously reported development of overt statin-induced muscle damage in FT muscles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Disease, injury, and age problems compromise human quality of life and continuously motivate the search for new and more efficacious therapeutic approaches. The field of Tissue Regeneration and Engineering has greatly evolved over the last years, mainly due to the combination of the important advances verified in Biomaterials Science and Engineering with those of Cell and Molecular Biology. In particular, a new and promising area arose – Nanomedicine – that takes advantage of the extremely small size and especial chemical and physical properties of Nanomaterials, offering powerful tools for health improvement. Research on Stem Cells, the self-renewing progenitors of body tissues, is also challenging to the medical and scientific communities, being expectable the appearance of new and exciting stem cell-based therapies in the next years. The control of cell behavior (namely, of cell proliferation and differentiation) is of key importance in devising strategies for Tissue Regeneration and Engineering. Cytokines, growth factors, transcription factors and other signaling molecules, most of them proteins, have been identified and found to regulate and support tissue development and regeneration. However, the application of these molecules in long-term regenerative processes requires their continuous presence at high concentrations as they usually present short half-lives at physiological conditions and may be rapidly cleared from the body. Alternatively, genes encoding such proteins can be introduced inside cells and be expressed using cell’s machinery, allowing an extended and more sustained production of the protein of interest (gene therapy). Genetic engineering of stem cells is particularly attractive because of their self-renewal capability and differentiation potential. For Tissue Regeneration and Engineering purposes, the patient’s own stem cells can be genetically engineered in vitro and, after, introduced in the body (with or without a scaffold) where they will not only modulate the behavior of native cells (stem cell-mediated gene therapy), but also directly participate in tissue repair. Cells can be genetically engineered using viral and non-viral systems. Viruses, as a result of millions of years of evolution, are very effective for the delivery of genes in several types of cells, including cells from primary sources. However, the risks associated with their use (like infection and immunogenic reactions) are driving the search for non-viral systems that will efficiently deliver genetic material into cells. Among them, chemical methods that are promising and being investigated use cationic molecules as carriers for DNA. In this case, gene delivery and gene expression level remain relatively low when primary cells are used. The main goal of this thesis was to develop and assess the in vitro potential of polyamidoamine (PAMAM) dendrimers based carriers to deliver genes to mesenchymal stem cells (MSCs). PAMAM dendrimers are monodispersive, hyperbranched and nanospherical molecules presenting unique characteristics that make them very attractive vehicles for both drug and gene delivery. Although they have been explored for gene delivery in a wide range of cell lines, the interaction and the usefulness of these molecules in the delivery of genes to MSCs remains a field to be explored. Adult MSCs were chosen for the studies due to their potential biomedical applications (they are considered multipotent cells) and because they present several advantages over embryonic stem cells, such as easy accessibility and the inexistence of ethical restrictions to their use. This thesis is divided in 5 interconnected chapters. Chapter I provides an overview of the current literature concerning the various non-viral systems investigated for gene delivery in MSCs. Attention is devoted to physical methods, as well as to chemical methods that make use of polymers (natural and synthetic), liposomes, and inorganic nanoparticles as gene delivery vectors. Also, it summarizes the current applications of genetically engineered mesenchymal stem cells using non-viral systems in regenerative medicine, with special focus on bone tissue regeneration. In Chapter II, the potential of native PAMAM dendrimers with amine termini to transfect MSCs is evaluated. The level of transfection achieved with the dendrimers is, in a first step, studied using a plasmid DNA (pDNA) encoding for the β-galactosidase reporter gene. The effect of dendrimer’s generation, cell passage number, and N:P ratio (where N= number of primary amines in the dendrimer; P= number of phosphate groups in the pDNA backbone) on the level of transfection is evaluated, being the values always very low. In a second step, a pDNA encoding for bone morphogenetic protein-2, a protein that is known for its role in MSCs proliferation and differentiation, is used. The BMP-2 content produced by transfected cells is evaluated by an ELISA assay and its effect on the osteogenic markers is analyzed through several classical assays including alkaline phosphatase activity (an early marker of osteogenesis), osteocalcin production, calcium deposition and mineralized nodules formation (late osteogenesis markers). Results show that a low transfection level is enough to induce in vitro osteogenic differentiation in MSCs. Next, from Chapter III to Chapter V, studies are shown where several strategies are adopted to change the interaction of PAMAM dendrimers with MSCs cell membrane and, as a consequence, to enhance the levels of gene delivery. In Chapter III, generations 5 and 6 of PAMAM dendrimers are surface functionalized with arginine-glycine-aspartic acid (RGD) containing peptides – experiments with dendrimers conjugated to 4, 8 and 16 RGD units were performed. The underlying concept is that by including the RGD integrin-binding motif in the design of the vectors and by forming RGD clusters, the level of transfection will increase as MSCs highly express integrins at their surface. Results show that cellular uptake of functionalized dendrimers and gene expression is enhanced in comparison with the native dendrimers. Furthermore, gene expression is dependent on both the electrostatic interaction established between the dendrimer moiety and the cell surface and the nanocluster RGD density. In Chapter IV, a new family of gene delivery vectors is synthesized consisting of a PAMAM dendrimer (generation 5) core randomly linked at the periphery to alkyl hydrophobic chains that vary in length and number. Herein, the idea is to take advantage of both the cationic nature of the dendrimer and the capacity of lipids to interact with biological membranes. These new vectors show a remarkable capacity for internalizing pDNA, being this effect positively correlated with the –CH2– content present in the hydrophobic corona. Gene expression is also greatly enhanced using the new vectors but, in this case, the higher efficiency is shown by the vectors containing the smallest hydrophobic chains. Finally, chapter V reports the synthesis, characterization and evaluation of novel gene delivery vectors based on PAMAM dendrimers (generation 5) conjugated to peptides with high affinity for MSCs membrane binding - for comparison, experiments are also done with a peptide with low affinity binding properties. These systems present low cytotoxicity and transfection efficiencies superior to those of native dendrimers and partially degraded dendrimers (Superfect®, a commercial product). Furthermore, with this biomimetic approach, the process of gene delivery is shown to be cell surface receptor-mediated. Overall, results show the potential of PAMAM dendrimers to be used, as such or modified, in Tissue Regeneration and Engineering. To our knowledge, this is the first time that PAMAM dendrimers are studied as gene delivery vehicles in this context and using, as target, a cell type with clinical relevancy. It is shown that the cationic nature of PAMAM dendrimers with amine termini can be synergistically combined with surface engineering approaches, which will ultimately result in suitable interactions with the cytoplasmic membrane and enhanced pDNA cellular entry and gene expression. Nevertheless, the quantity of pDNA detected inside cell nucleus is always very small when compared with the bigger amount reaching cytoplasm (accumulation of pDNA is evident in the perinuclear region), suggesting that the main barrier to transfection is the nuclear membrane. Future work can then be envisaged based on the versatility of these systems as biomedical molecular materials, such as the conjugation of PAMAM dendrimers to molecules able to bind nuclear membrane receptors and to promote nuclear translocation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)