958 resultados para TiO2 thin film
Resumo:
Stress is inevitable during thin film growth. It is demonstrated here that the growth stress has a significant effect on the dielectric constant of high-k thin films. ZrO2 thin films were deposited on Ge by reactive direct current sputtering. Stress in these films was measured using in-situ curvature measurement tool. The growth stress was tuned from -2.8 to 0.1 GPa by controlling deposition rate. Dielectric permittivity of ZrO2 depends on temperature, phase, and stress. The correct combination of parameters-phase, texture, and stress-is shown to yield films with an equivalent oxide thickness of 8 angstrom. Growth stresses are shown to affect the dielectric constant both directly by affecting lattice parameter and indirectly through the effect on phase stability of ZrO2. (c) 2016 AIP Publishing LLC.
Resumo:
Well-crystallized anatase and mixed (anatase-rutile) phase TiO2 thin films were deposited by DC magnetron sputtering technique at various DC powers in the range of 80-140 W. Pure anatase phase was observed in the TiO2 films deposited at low power of 80 W. Films deposited at 120 W were composed of both anatase and rutile phases. At higher power of 140 W, the films are rutile dominated and the rutile percentage increased from 0 to 82% with increase of DC power. The same results of phase change were confirmed by Raman studies. The surface morphology of the TiO2 films showed that the density of the films increased with increase of sputter power. The optical band gap of the films varied from 3.35 to 3.14 eV with increase of DC power. The photocatalytic activity of the TiO2 films increased with increasing DC power up to 120 W and after that it decreases. We found that the TiO2 films deposited at 120 W with 48% of rutile phase, exhibited high photocatalytic activity (43% of degradation) under UV light compared with other TiO2 films. After loading the optimized Ag nanoparticles on the mixed phase TiO2 films, the photocatalytic activity shifted from UV to visible region with enhancement of photocatalytic activity (55% of degradation). (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Well-crystallized anatase and mixed (anatase-rutile) phase TiO2 thin films were deposited by DC magnetron sputtering technique at various DC powers in the range of 80-140 W. Pure anatase phase was observed in the TiO2 films deposited at low power of 80 W. Films deposited at 120 W were composed of both anatase and rutile phases. At higher power of 140 W, the films are rutile dominated and the rutile percentage increased from 0 to 82% with increase of DC power. The same results of phase change were confirmed by Raman studies. The surface morphology of the TiO2 films showed that the density of the films increased with increase of sputter power. The optical band gap of the films varied from 3.35 to 3.14 eV with increase of DC power. The photocatalytic activity of the TiO2 films increased with increasing DC power up to 120 W and after that it decreases. We found that the TiO2 films deposited at 120 W with 48% of rutile phase, exhibited high photocatalytic activity (43% of degradation) under UV light compared with other TiO2 films. After loading the optimized Ag nanoparticles on the mixed phase TiO2 films, the photocatalytic activity shifted from UV to visible region with enhancement of photocatalytic activity (55% of degradation). (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Vanadium Oxide has been a frontrunner in the field of oxide electronics because of its metal-insulator transition (MIT). The interplay of different structures of VO2 has played a crucial role in deciding the magnitude of the first order MIT. Substitution doping has been found to introduce different polymorphs of VO2. Hence the role of substitution doping in stabilizing the competing phases of VO2 in the thin film form remains underexplored. Consequently there have been reports both discounting and approving such a stabilization of competing phases in VO2. It is reported in the literature that the bandwidth of the hysteresis and transition temperature of VO2 can be tuned by substitutional doping of VO2 with W. In this work, we have adopted a novel technique called, Ultrasonic Nebulized Spray Pyrolysis of Aqueous Combustion Mixture (UNSPACM) to deposit VO2 and W- doped VO2 as thin films. XRD and Raman spectroscopy were used to investigate the role of tungsten on the structure of VO2 thin films. Morphology of the thin films was found to be consisting of globular and porous nanoparticles of size similar to 20nm. Transition temperature decreased with the addition of W. We found that for 2.0 at % W doping in VO2, the transition temperature has reduced from 68 degrees C to 25 degrees C. It is noted that W-doping in the process of reducing the transition temperature, alters the local structure and also increases room temperature carrier concentration. (c) 2016 Author(s).
Resumo:
The morphological stability of epitaxial thin elastic films on a substrate by van der Waals force is discussed. It is found that only van der Waals force with negative Hamaker constant (A < 0) tends to stabilize the film, and the lower bound for the Hamaker constant is also obtained for the stability of thin film. The critical value of the undulation wavelength is found to be a function of both film thickness and external stress. The charateristic time-scale for surface mass diffusion scales to the fourth power to the wavelength of the perturbation.
Resumo:
Three analytical double-parameter criteria based on a bending model and a two-dimensional finite element analysis model are presented for the modeling of ductile thin film undergoing a nonlinear peeling process. The bending model is based on different governing parameters: (1) the interfacial fracture toughness and the separation strength, (2) the interfacial fracture toughness and the crack tip slope angle, and (3) the interfacial fracture toughness and the critical Mises effective strain of the delaminated thin film at the crack tip. Thin film nonlinear peeling under steady-state condition is solved with the different governing parameters. In addition, the peeling test problem is simulated by using the elastic-plastic finite element analysis model. A critical assessment of the three analytical bending models is made by comparison of the bending model solutions with the finite element analysis model solutions. Furthermore, through analyses and comparisons for solutions based on both the bending model and the finite element analysis model, some connections between the bending model and the finite element analysis model are developed. Moreover, in the present research, the effect of different selections for cohesive zone shape on the ductile film peeling solutions is discussed.
Resumo:
An attempt has been made to prepare a YBa2Cu3O 7-δ (YBCO) thin film doped with ferromagnetic CoFe 2O4. Transmission electron microscopy of the resultant samples shows, however, that Y(Fe, Co)O3 forms as a nanoparticulate dispersion throughout the film in preference to CoFe2O4, leaving the YBCO yttrium deficient. As a consequence, the superconducting properties of the sample are poor, with a self-field critical current density of just 0.25 MA cm-2. Magnetic measurements indicate however that the Y(Fe, Co)O3 content, together with any other residual phases, is also ferromagnetic, and some interesting features are present in the in-field critical current behaviour, including a reduced dependence on applied field and a strong c-axis peak in the angular dependence. The work points the way towards future attempts utilising YFeO3 as an effective ferromagnetic pinning additive for YBCO. © 2009 Elsevier B.V. All rights reserved.
Resumo:
The interface adhesion strength (or interface toughness) of a thin film/substrate system is often assessed by the micro-scratch test. For a brittle film material, the interface adhesion strength is easily obtained through measuring the scratch driving forces. However, to measure the interface adhesion strength (or interface toughness) for a metal thin film material (the ductile material) by the microscratch test is very difficult, because intense plastic deformation is involved and the problem is a three-dimensional elastic-plastic one. In the present research, using a double-cohesive zone model, the failure characteristics of the thin film/substrate system can be described and further simulated. For a steady-state scratching process, a three-dimensional elastic-plastic finite element method based on the double cohesive zone model is developed and adopted, and the steady-state fracture work of the total system is calculated. The parameter relations between the horizontal driving forces (or energy release rate of the scratching process) and the separation strength of thin film/substrate interface, and the material shear strength, as well as the material parameters are developed. Furthermore, a scratch experiment for the Al/Si film/substrate system is carried out and the failure mechanisms are explored. Finally, the prediction results are applied to a scratch experiment for the Pt/NiO material system given in the literature.
Resumo:
Two types of peeling experiments are performed in the present research. One is for the Al film/Al2O3 substrate system with an adhesive layer between the film and the substrate. The other one is for the Cu film/Al2O3 substrate system without adhesive layer between the film and the substrate, and the Cu films are electroplated onto the Al2O3 substrates. For the case with adhesive layer, two kinds of adhesives are selected, which are all the mixtures of epoxy and polyimide with mass ratios 1:1.5 and 1:1, respectively. The relationships between energy release rate, the film thickness and the adhesive layer thickness are measured during the steady-state peeling process. The effects of the adhesive layer on the energy release rate are analyzed. Using the experimental results, several analytical criteria for the steady-state peeling based on the bending model and on the two-dimensional finite element analysis model are critically assessed. Through assessment of analytical models, we find that the cohesive zone criterion based on the beam bend model is suitable for a weak interface strength case and it describes a macroscale fracture process zone case, while the two-dimensional finite element model is effective to both the strong interface and weak interface, and it describes a small-scale fracture process zone case. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In the present study, peel tests and inverse analysis were performed to determine the interfacial mechanical parameters for the metal film/ceramic system with an epoxy interface layer between film and ceramic. Al films with a series of thicknesses between 20 and 250 mu m and three peel angles of 90 degrees, 135 degrees and 180 degrees were considered. A finite element model with the cohesive zone elements was used to simulate the peeling process. The finite element results were taken as the training data of a neural network in the inverse analysis. The interfacial cohesive energy and the separation strength can be determined based on the inverse analysis and peel experimental result.
Resumo:
Laser-induced well-ordered and controllable wavy patterns are constructed in the deposited metal thin film. The micrometer-sized structure and orientation of the wavy patterns can be controlled via scanning a different size of rectangle laser spot on the films. Ordered patterns such as aligned, crossed, and whirled wave structures were designed over large areas. This patterning technique may find applications in both exploring the reliability and mechanical properties of thin films, and fabricating microfluidic devices. (C) 2004 American Institute of Physics.
Resumo:
Peel test measurements have been performed to estimate both the interface toughness and the separation strength between copper thin film and Al2O3 substrate with film thicknesses ranging between 1 and 15 mu m. An inverse analysis based on the artificial neural network method is adopted to determine the interface parameters. The interface parameters are characterized by the cohesive zone (CZ) model. The results of finite element simulations based on the strain gradient plasticity theory are used to train the artificial neural network. Using both the trained neural network and the experimental measurements for one test result, both the interface toughness and the separation strength are determined. Finally, the finite element predictions adopting the determined interface parameters are performed for the other film thickness cases, and are in agreement with the experimental results.
Resumo:
Two stages have been observed in micro-indentation experiment of a soft film on a hard substrate. In the first stage, the hardness of the thin film decreases with increasing depth of indentation when indentation is shallow; and in the second stage, the hardness of the film increases with increasing depth of indentation when the indenter tip approaches the hard substrate. In this paper, the new strain gradient theory is used to analyze the micro-indentation behavior of a soft film on a hard substrate. Meanwhile, the classic plastic theory is also applied to investigating the problem. Comparing two theoretical results with the experiment data, one can find that the strain gradient theory can describe the experiment data at both the shallow and deep indentation depths quite well, while the classic theory can't explain the experiment results.
Resumo:
In order to characterize the physical and spatial properties of nano-film pattern on solid substrates, an automatic imaging spectroscopic ellipsometer (ISE) based on a polarizer - compensator - specimen - analyzer configuration in the visible region is presented. It can provide the spectroscopic ellipsometric parameters psi (x, y, lambda) and Delta (x, y, lambda) of a large area specimen with a lateral resolution in the order of some microns. A SiO2 stepped layers pattern is used to demonstrate the function of the ISE which shows potential application in thin film devices' such as high-throughput bio-chips.