957 resultados para Thin cell layer


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical detection of solid-state charge qubits requires ultrasensitive charge measurement, typically using a quantum point contact or single-electron-transistor, which imposes strict limits on operating temperature, voltage and current. A conventional FET offers relaxed operating conditions, but the back-action of the channel charge is a problem for such small quantum systems. Here, we discuss the use of a percolation transistor as a measurement device, with regard to charge sensing and backaction. The transistor is based on a 10nm thick SOI channel layer and is designed to measure the displacement of trapped charges in a nearby dielectric. At cryogenic temperatures, the trapped charges result in strong disorder in the channel layer, so that current is constrained to a percolation pathway in sub-threshold conditions. A microwave driven spatial Rabi oscillation of the trapped charge causes a change in the percolation pathway, which results in a measurable change in channel current. © The Electrochemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the development of a drug-loaded triple-layer platform consisting of thin film biodegradable polymers, in a properly designed form for the desired gradual degradation. Poly(dl-lactide-co-glycolide) (PLGA (65:35), PLGA (75:25)) and polycaprolactone (PCL) were grown by spin coating technique, to synthesize the platforms with the order PCL/PLGA (75:25)/PLGA (65:35) that determine their degradation rates. The outer PLGA (65:35) layer was loaded with dipyridamole, an antiplatelet drug. Spectroscopic ellipsometry (SE) in the Vis-far UV range was used to determine the nanostructure, as well as the content of the incorporated drug in the as-grown platforms. In situ and real-time SE measurements were carried out using a liquid cell for the dynamic evaluation of the fibrinogen and albumin protein adsorption processes. Atomic force microscopy studies justified the SE results concerning the nanopores formation in the polymeric platforms, and the dominant adsorption mechanisms of the proteins, which were defined by the drug incorporation in the platforms. © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Roll-to-roll (R2R) gravure exhibits significant advantages such as high precision and throughput for the printing of photoactive and conductive materials and the fabrication of flexible organic electronics such as organic photovoltaics (OPVs). Since the photoactive layer is the core of the OPV, it is important to investigate and finally control the process parameters and mechanisms that define the film morphology in a R2R process. The scope of this work is to study the effect of the R2R gravure printing and drying process on the nanomorphology and nanostructure of the photoactive P3HT:PCBM thin films printed on PEDOT:PSS electrodes towards the fabrication of indium tin oxide (ITO)-free flexible OPVs. In order to achieve this, P3HT:PCBM blends of different concentration were R2R printed under various speeds on the PEDOT:PSS layers. Due to the limited drying time during the rolling, an amount of solvent remains in the P3HT:PCBM films and the slow-drying process takes place which leads to the vertical and lateral phase separation, according to the Spectroscopic Ellipsometry and Atomic Force Microscopy analysis. The enhanced slow-drying leads to stronger phase separation, larger P3HT crystallites according to the Grazing Incidence X-Ray Diffraction data and to weaker mechanical response as it was shown by the nanoindentation creep. However, in the surface of the films the P3HT crystallization is controlled by the impinged hot air during the drying, where the more the drying time the larger the surface P3HT crystallites. The integration of the printed P3HT:PCBM and PEDOT:PSS layers in an OPV device underlined the feasibility of fabricating ITO-free flexible OPVs by R2R gravure processes. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electronic systems are a very good platform for sensing biological signals for fast point-of-care diagnostics or threat detection. One of the solutions is the lab-on-a-chip integrated circuit (IC), which is low cost and high reliability, offering the possibility for label-free detection. In recent years, similar integrated biosensors based on the conventional complementary metal oxide semiconductor (CMOS) technology have been reported. However, post-fabrication processes are essential for all classes of CMOS biochips, requiring biocompatible electrode deposition and circuit encapsulation. In this work, we present an amorphous silicon (a-Si) thin film transistor (TFT) array based sensing approach, which greatly simplifies the fabrication procedures and even decreases the cost of the biosensor. The device contains several identical sensor pixels with amplifiers to boost the sensitivity. Ring oscillator and logic circuits are also integrated to achieve different measurement methodologies, including electro-analytical methods such as amperometric and cyclic voltammetric modes. The system also supports different operational modes. For example, depending on the required detection arrangement, a sample droplet could be placed on the sensing pads or the device could be immersed into the sample solution for real time in-situ measurement. The entire system is designed and fabricated using a low temperature TFT process that is compatible to plastic substrates. No additional processing is required prior to biological measurement. A Cr/Au double layer is used for the biological-electronic interface. The success of the TFT-based system used in this work will open new avenues for flexible label-free or low-cost disposable biosensors. © 2013 Materials Research Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2014 Elsevier Masson SAS. All rights reserved. The turbulent boundary layer on a rotating disk is studied with the aim of giving a statistical description of the azimuthal velocity field and to compare it with the streamwise velocity of a turbulent two-dimensional flat-plate boundary layer. Determining the friction velocity accurately is particularly challenging and here this is done through direct measurement of the velocity distribution close to the rotating disk in the very thin viscous sublayer using hot-wire anemometry. Compared with other flow cases, the rotating-disk flow has the advantage that the highest relative velocity with respect to a stationary hot wire is at the wall itself, thereby limiting the effect of heat conduction to the wall from the hot-wire probe. Experimental results of mean, rms, skewness and flatness as well as spectral information are provided. Comparison with the two-dimensional boundary layer shows that turbulence statistics are similar in the inner region, although the rms-level is lower and the maximum spectral content is found at smaller wavelengths for the rotating case. These features both indicate that the outer flow structures are less influential in the inner region for the rotating case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the optical properties of thick InGaN film grown on GaN by cathodeluminescence (CL) spectroscopy. It is found that there is obvious In composition variation in both growth and lateral direction of InGaN film. The depth distribution of In composition is closely related to the strain relaxation process of InGaN film. Accompanied with the relaxation of compressive strain, the In composition of InGaN layer increases and the CL peak energy shifts towards red. Moreover, a rather apparent In composition fluctuation is found in the relaxed upper part of InGaN layer as confirmed by CL imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A flat, fully strain-relaxed Si0.72Ge0.28 thin film was grown on Si (1 0 0) substrate with a combination of thin low-temperature (LT) Ge and LT-Si0.72Ge0.28 buffer layers by ultrahigh vacuum chemical vapor deposition. The strain relaxation ratio in the Si0.72Ge0.28 film was enhanced up to 99% with the assistance of three-dimensional Ge islands and point defects introduced in the layers, which furthermore facilitated an ultra-low threading dislocation density of 5 x 10(4) cm (2) for the top SiGe film. More interestingly, no cross-hatch pattern was observed on the SiGe surface and the surface root-mean-square roughness was less than 2 nm. The temperature for the growth of LT-Ge layer was optimized to be 300 degrees C. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

10 mu m-thick ultra-thin Si (111) membranes for GaN epi-layers growth were successfully fabricated on silicon-on-insulator (SOI) substrate by backside etching the handle Si and buried oxide (BOX) layer. Then 1 mu m-thick GaN layers were deposited on these Si membranes by metal-organic chemical vapor deposition (MOCVD). The crack-free areas of 250 mu m, x 250 mu m were obtained on the GaN layers due to the reduction of thermal stress by using these ultra-thin Si membranes, which was further confirmed by the photoluminescence (PL) spectra and the simulation results from the finite element method calculation by using the software of ANSYS. In this paper, a newly developed approach was demonstrated to utilize micromechanical structures for GaN growth, which would improve the material quality of the epi-layers and facilitate GaN-based micro electro-mechanical system (MEMS) fabrication, especially the pressure sensor, in the future applications. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-quality Ge epilayer on Si(1 0 0) substrate with an inserted low-temperature Ge seed layer and a thin Si0.77Ge0.23 layer was grown by ultrahigh vacuum chemical vapor deposition. The epitaxial Ge layer with surface root-mean-square roughness of 0.7 nm and threading dislocation density of 5 x 10(5) cm(-2) was obtained. The influence of low temperature Ge seed layer on the quality of Ge epilayer was investigated. We demonstrated that the relatively higher temperature (350 degrees C) for the growth of Ge seed layer significantly improved the crystal quality and the Hall hole mobility of the Ge epilayer. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 5.35-mu m-thick ZnO film is grown by chemical vapour deposition technique on a sapphire (0001) substrate with a GaN buffer layer. The surface of the ZnO film is smooth and shows many hexagonal features. The full width at half maximum of ZnO (0002) omega-rocking curve is 161 arcsec, corresponding to a high crystal quality of the ZnO film. From the result of x-ray diffraction theta - 2. scanning, the stress status in ZnO film is tensile, which is supported by Raman scattering measurement. The reason of the tensile stress in the ZnO film is analysed in detail. The lattice mismatch and thermal mismatch are excluded and the reason is attributed to the coalescence of grains or islands during the growth of the ZnO film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performances of In0.65Ga0.35N single-junction solar cells with different structures, including various doping densities and thicknesses of each layer, have been simulated. It is found that the optimum efficiency of a In0.65Ga0.35N solar cell is 20.284% with 5 x 10(17) cm(-3) carrier concentration of the front and basic regions, a 130 nm thick p-layer and a 270 nm thick n-layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly c-axis oriented ZnO thin films were deposited on Si substrates by the pulsed laser deposition (PLD) method. At different growth temperatures, 200 nm silver films as the contact metal were deposited on the ZnO thin films. The growth temperatures have great influence on the crystal quality of Ag films. Current-voltage characteristics were measured at room temperature. The Schottky contacts between Ag and ZnO thin films were successfully obtained when silver electrodes were deposited at 150A degrees C and 200A degrees C. Ohmic contacts were formed while the growth temperatures were lower than 150A degrees C or higher than 200A degrees C. After analysis, the forming of Ag/ZnO Schottky contacts was shown to be dependent on the appearance of the p-type inversion layer at the interface between Ag and ZnO layers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical properties and fracture behavior of silicon nitride (SiNx) thin film fabricated by plasma-enhanced chemical vapor deposition is reported. Plane-strain moduli, prestresses, and fracture strengths of silicon nitride thin film; deposited both oil a bare Si substrate and oil a thermally oxidized Si substrate were extracted using bulge testing combined with a refined load-deflection model of long rectangular membranes. The plane-strain modu i and prestresses of SiNx thin films have little dependence on the substrates, that is, for the bare Si substrate, they are 133 +/- 19 GPa and 178 +/- 22 MPa, respectively, while for the thermally oxidized substrate, they are 140 +/- 26 Gila and 194 +/- 34 MPa, respectively. However, the fracture strength values of SiNx films grown on the two substrates are quite different, i.e., 1.53 +/- 0.33 Gila and 3.08 +/- 0.79 GPa for the bare Si substrate a A the oxidized Si substrate, respectively. The reference stresses were computed by integrating the local stress of the membrane at the fracture over the edge, Surface, and volume of the specimens and fitted with the Weibull distribution function. For SiNx thin film produced oil the bare Si Substrate, the Volume integration gave a significantly better agreement between data and model, implying that the volume flaws re the dominant fracture origin. For SiNx thin film grown on the oxidized Si substrate, the fit quality of surface and edge integration was significantly better than the Volume integration, and the dominant surface and edge flaws could be caused by buffered HF attacking the SiNx layer during SiO2 removal. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metallic back structures with one-dimensional periodic nanoridges attached to a thin-film amorphous Si (a-Si) solar cell are numerically studied. At the interfaces between a-Si and metal materials, the excitation of surface-plasmon polaritons leads to obvious absorption enhancements in a wide near-IR range for different ridge shapes and periods. The highest enhancement factor of the cell external quantum efficiency is estimated to be 3.32. The optimized structure can achieve an increase of 17.12% in the cell efficiency. (C) 2009 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate the self-organized InAs quantum dots capped with thin and In0.2Al0.8As and In0.2Ga0.8As combination layers with a large ground and first excited energy separation emission at 1.35 mum at room temperature. Deep level transient spectroscopy is used to obtain quantitative information on emission activation energies and capture barriers for electrons and holes. For this system, the emission activation energies are larger than those for InAs/GaAs quantum dots. With the properties of wide energy separation and deep emission activation energies, self-organized InAs quantum dots capped with In0.2Al0.8As and In0.2Ga0.8As combination layers are one of the promising epitaxial structures of 1.3 mum quantum dot devices. (C) 2004 American Institute of Physics.