948 resultados para Saccharomyces bayanus
Resumo:
Maltose and glucose fermentations by industrial brewing and wine yeasts strains were strongly affected by the structural complexity of the nitrogen source. In this study, four Saccharomyces cerevisiae strains, two brewing and two wine yeasts, were grown in a medium containing maltose or glucose supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Diauxie was observed at low sugar concentration for brewing and wine strains, independent of nitrogen supplementation, and the type of sugar. At high sugar concentrations altered patterns of sugar fermentation were observed, and biomass accumulation and ethanol production depended on the nature of the nitrogen source and were different for brewing and wine strains. In maltose, high biomass production was observed under peptone and casamino acids for the brewing and wine strains, however efficient maltose utilization and high ethanol production was only observed in the presence of casamino acids for one brewing and one wine strain studied. Conversely, peptone and casamino acids induced higher biomass and ethanol production for the two other brewing and wine strains studied. With glucose, in general, peptone induced higher fermentation performance for all strains, and one brewing and wine strain produced the same amount of ethanol with peptone and casamino acids supplementation. Ammonium salts always induced poor yeast performance. The results described in this paper suggest that the complex nitrogen composition of the cultivation medium may create conditions resembling those responsible for inducing sluggish/stuck fermentation, and indicate that the kind and concentration of sugar, the complexity of nitrogen source and the yeast genetic background influence optimal industrial yeast fermentation performance.
Resumo:
The use of Saccharomyces cerevisiae as a substrate to selectively retain Sn(II) and Sn(IV) has been investigated. Several factors affecting the retention of the analytes by yeast, such as pH, amount of biomass, temperature and time of contact were evaluated. Based on this study, a method for determination of Sn(II) and Sn(IV) combining inductively coupled plasma optical emission spectrometry (ICP OES) and solid phase extraction using Saccharomyces cerevisiae is proposed. The procedure consists of the selective retention of Sn(IV) by yeast at pH = 2.0 while Sn(II) remains in solution. Determination of tin in the solid phase was easily carried out by submitting a slurry of the yeast (0.5 g/40 mL) directly to ICP OES. The precision of the extraction procedure was characterized by an RSD lower than 4%. The detection limits of tin (3 sigma) in the solid phase and the liquid phase were 1.1 and 0.7 mu g L-1, respectively. The proposed approach was evaluated for determination of Sn(II) and Sn(IV) in spiked river water and real samples of industrial waste water (untreated and treated). For all samples, recoveries of spiked Sn(II) and Sn(IV) were between 85 and 112%.
Resumo:
The use of Saccharomyces cerevisiae as a sorbent material to separate Cd(II) and Cd-metallothionein complex (Cd-MT) has been explored. Solid-liquid phase extractions were carried out in batch mode and the main parameters of the process (pH, temperature, time of incubation, amount of biomass and analyte) were evaluated. Under optimized conditions, the yeast quantitatively retain (94 +/- 5%) the Cd(II) while 97 +/- 2% of the Cd-MT remain in the supernatant. on base of the findings of this study, a simple method is proposed to determine Cd(II) and Cd-MT in cytosols extracted from mouse kidney and crab hepatopancreas. Inductively coupled plasma optical emission spectrometry was used to quantify the analytes in solid and liquid phase. Determination of Cd in the solid phase was carried out by introducing a slurry of the yeast (0.0625 g/10 mL) directly to the inductively coupled plasma optical emission spectrometer. Mixed standards solutions, which also have been submitted to the extraction procedure, were used to quantify the analytes in the samples. Thus, matrix effects due to nebulization of the slurry were overcame. Limits of detection (3 sigma) for Cd(II) and Cd-MT were 1.5 and 1.2 mu g L-1, respectively. Relative standard deviations of signals were 4.2% for measurements in the slurry of solid phase and 2.1% for measurements in the liquid phase. Recoveries of the analytes in cytosol samples were between 76 and 114%. The concentrations of Cd(II) (2.4 +/- 0.5 mu g L-1) and Cd-MT (3.0 +/- 0.5 mu g L-1) found by using the proposed approach were close to those found by tangential-flow ultrafiltration technique (2.6 +/- 0.7 mu g L-1 for Cd(II) and 3.7 +/- 1.7 mu g L-1 for Cd-MT).
Resumo:
Phytochemical investigation of Chioccoca alba afforded three new iridoids, alboside I, alboside II and alboside III, and a new seco-iridoid alboside V. Alboside IV showed moderate activity towards the DNA repair-deficient mutant RS321 of Saccharomyces cerevisiae. The structural elucidation of the new compounds was performed by ES-MS and by 1D and 2D NMR spectroscopic methods. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
New yeast strains for alcoholic fermentation were isolated from samples collected from Brazilian alcohol factories at the end of the sugar cane crop season. They were selected by their capacity of fermenting concentrated sugar cane syrup as well as high sucrose concentrations in synthetic medium with a conversion efficiency of 89-92%. The strains were identified as Saccharomyces cerevisiae.
Resumo:
3,4,4'-trichlorocarbanilide (TCC) was rested as a new method of bacterial growth control for S. cerevisiae alcoholic fermentations of diluted high test molasses (HTM). Minimal inhibitory concentration (MIC) was tested to determine the necessary concentration of TCC to control bacterial growth. The fed-batch alcoholic fermentation process was used with cell recycle similar to industrial conditions and Lactobacillus fermentum CCT 1407 was mixed in the first inoculum to grow with the yeast. Yeast extract was added into the must to stimulate bacterial growth. The best results of TCC's MIC to bacterial growth of Lactobacillus fermentum and Leuconostoc mesenteroides (< 0.125-1.0 mu g/ml) and Saccharomyces cerevisiae (16 mu g/ml) occurred when it was combined with sodium dodecylsulphate (SDS) in a 1: 4 TCC/SDS ratio (wt/wt) in distilled water solution. 1.8 g/l TCC entrapped in calcium alginate added to the must with yeast extract inhibited the growth of Lactobacillus fermentum CCT 1407 maintaining a controlled acidity, higher yeast viability and up to 20.8% of improvement in the average of alcoholic efficiency. Addition of 0.075 g/l TCC entrapped in calcium alginate and 1.67 mg/l SDS in the wort with yeast extract (0-5.0 g/l), inhibited and controlled the extensive bacterial contamination for 19 cycles of fermentation. (C) 1998 Published by Elsevier B.V. Ltd.
Resumo:
In the beginning there was yeast, and it raised bread, brewed beer, and made wine. After many not days but centuries and even millenia later, it was named Saccharomyces cerevisiae. After more years and centuries there was another yeast, and it was named Schizo-saccharomyces pombe; now there were two stars in the yeast heaven. In only a few more years there were other yeasts, and then more, and more, and more. The era of the non-conventional yeasts had begun.
Resumo:
The dough-leavening power of baker's yeast, Saccharomyces cerevisiae, is strongly influenced by conditions under which the pressed yeast is maintained prior to bread dough preparation. In this study, the influence of the yeast cell's pre-treatment with organic acids (malic, succinic, and citric acids) was investigated at a wide range of pH values when the pressed yeast samples were exposed to 30 degrees C. Increased fermentative activity was observed immediately after pre-treatment of the cells with organic acids. When the pH of the pressed yeast containing added citric acid was raised from 3.5 to 7.5, increases in both fermentative and maltase activities were obtained. Improvements in viability and levels of total protein were also observed during storage in the presence of citric acid, notably at pH 7.5. Glycerol-3-phosphate dehydrogenase activity and levels of internal glycerol also increased in the presence of citrate. on the other hand, pressed yeast samples containing succinic acid at pH 7.5 showed decreased viability during storage despite the maintenance of high levels of fermentative activity, similar to pressed yeast containing malic acid at pH 4.5 and 7.5. Decreases in intracellular levels of trehalose were observed during storage in all cases. Overall, the results of this study revealed the potential benefits of adding organic acids to pressed yeast preparations for baking purposes.
Resumo:
Directed evolution was used to improve the thermostability of Aspergillus niger glucoamylase (GA) expressed in Saccharomyces cerevisiae. A starch-plate assay developed to screen GA mutants for thermostability gave results consistent with those of irreversible thermoinactivation kinetic analysis. Several thermostable multiply-mutated GAs were isolated and characterized by DNA sequencing and kinetic analysis. Three new GA mutations, T62A, T290A and H391Y, have been identified that encode GAs that are more thermostable than wild-type GA, and that improve thermostability cumulatively. These individual mutations were combined with the previously constructed thermostable site-directed mutations D20C/A27C (forming a disulficle bond), S30P, and G137A to create a multiply-mutated GA designated THS8. THS8 GA is substantially more thermostable than wild-type GA at 8OoC, with a 5.1 kJ/mol increase in the free energy of therrnoinactivation, making it the most thermostable Aspergillus niger GA mutant characterized to date. THS8 GA and the singly-mutated GAs have specific activities and catalytic efficiencies (k(cat)/K-m) similar to those of wild-type GA.
Resumo:
In a biological and phytochemical study on the leaves of Psychotria spectabilis Steyerm., seven compounds were isolated and identified from the CHCl3/MeOH (2:1, v/v) and MeOH extracts. Among the isolates were two diterpenes, solidagenone and deoxysolidagenone; three coumarins, coumarin, umbelliferone, and psoralene; and two flavonols, quercetin and quercetrin. Biological evaluations showed that diterpenes and coumarins exhibited antifungal activity against the filamentous fungi Cladosporium cladosporioides (Fresen) de Vries and C sphaerospermum Penzig. Solidagenone and psoralene also displayed selective cytotoxic activity against Rad 52Y mutant yeast strain of Saccharomyces cerevisiae. In this paper, the isolation, structure elucidation, and bioactivity results of these compounds are reported.
Resumo:
The initiation of glycogen synthesis requires the protein glycogenin, which incorporates glucose residues through a self-glucosylation reaction, and then acts as substrate for chain elongation by glycogen synthase and branching enzyme. Numerous sequences of glycogenin-like proteins are available in the databases but the enzymes from mammalian skeletal muscle and from Saccharomyces cerevisiae are the best characterized. We report the isolation of a cDNA from the fungus Neurospora crassa, which encodes a protein, GNN, which has properties characteristic of glycogenin. The protein is one of the largest glycogenins but shares several conserved domains common to other family members. Recombinant GNN produced in Escherichia coli was able to incorporate glucose in a self-glucosylation reaction, to trans-glucosylate exogenous substrates, and to act as substrate for chain elongation by glycogen synthase. Recombinant protein was sensitive to C-terminal proteolysis, leading to stable species of around 31 kDa, which maintained all functional properties. The role of GNN as an initiator of glycogen metabolism was confirmed by its ability to complement the glycogen deficiency of a S. cerevisiae strain (glg1 glg2) lacking glycogenin and unable to accumulate glycogen. Disruption of the gnn gene of N. crassa by repeat induced point mutation (RIP) resulted in a strain that was unable to synthesize glycogen, even though the glycogen synthase activity was unchanged. Northern blot analysis showed that the gnn gene was induced during vegetative growth and was repressed upon carbon starvation. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Although insects lack the adaptive immune response of the mammalians, they manifest effective innate immune responses that include both cellular and humoral components. Cellular responses are mediated by hemocytes and Immoral responses include the activation of proteolytic cascades that initiate many events, including NO production. In this work, we determined NO production in Chrysomya megaccphala hemolymph and hemocytes after yeast inoculation. Assays were performed with non-infected controls (NIL), saline-injected larvae (SIL) or larvae injected with Saccharomyces cerevisiae (YIL). The hemolymph of injected groups was collected 0.5, 1, 2, 4, 12, 24 or 48 h post-injection. NO levels in SIL were comparable to those measured in NIL until 12 h, which might be considered the basal production, increasing at 24 and 48 h post-injection, probably in response to the increased larval fragility after cuticle rupture. YIL exhibited significantly higher levels of NO than were found in other groups, peaking at 24 h. L-NAME and EDTA caused a significant reduction of NO production in YIL at this time, suggesting the activity of a Ca2+ -dependent NOS. Plasmatocytes and granular cells phagocytosed the yeasts. Plasmatocytes initiated the nodule formation and granular cells were the only hemocyte type to produce NO. These results permit us to conclude that yeasts induced augmented NO production in C. megacephala hemolymph and granular cells are the hemocyte type involved with the generation of this molecule. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Biomass and ethanol production by industrial Saccharomyces cerevisiae strains were strongly affected by the structural complexity of the nitrogen source during fermentation in media containing galactose, and supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Diauxie was observed at low galactose concentrations independent of nitrogen supplementation. At high sugar concentrations altered patterns of galactose utilisation were observed. Biomass accumulation and ethanol production depended on the nature of the nitrogen source and were different for baking and brewing ale and lager strains. Baking yeast showed improved galactose fermentation performance in the medium supplemented with casamino acids. High biomass production was observed with peptone and casamino acids for the ale brewing strain, however high ethanol production was observed only in the presence of casamino acids. Conversely, peptone was the nitrogen supplement that induced higher biomass and ethanol production for the lager brewing strain. Ammonium salts always induced poor yeast performance. The results with galactose differed from those obtained with glucose and maltose which indicated that supplementation with a nitrogen source in the peptide form (peptone) was more positive for yeast metabolism, suggesting that sugar catabolite repression has a central role in yeast performance in a medium containing nitrogen sources with differing levels of structural complexity.
Resumo:
A fast flotation assay was used to select new floating yeast strains. The flotation ability did not seem to be directly correlated to total extracellular protein concentration of the culture. However, the hydrophobicity of the cell was definitely correlated to the flotation capacity. The Saccharomyces strains (FLT strains) were highly hydrophobic and showed an excellent flotation performance in batch cultures without additives (flotation agents) and with no need for a special flotation chamber or flotation column. A stable and well-organized structure was evident in the dried foam as shown by scanning electron microscopy which revealed its unique structure showing mummified cells (dehydrated) attached to each other. The attachment among the cells and the high protein concentration of the foams indicated that proteins might be involved in the foam formation. The floating strains (strains FLT) which were not flocculent and showed no tendency to aggregate, were capable of growing and producing ethanol in a synthetic medium containing high glucose concentration as a carbon source. The phenomenon responsible for flotation seems to be quite different from the flocculation phenomenon. (C) 1996 John Wiley & Sons, Inc.
Resumo:
The structural complexity of the nitrogen source strongly affects both biomass and ethanol production by industrial strains of Saccharomyces cerevisiae, during fermentation in media containing glucose or maltose, and supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Diauxie was observed at low glucose and maltose concentrations independent of nitrogen supplementation. At high sugar concentrations diauxie was not easily observed. and growth and ethanol production depended on the nature of the nitrogen source. This was different for baking and brewing ale and lager yeast strains. Sugar concentration had a strong effect on the shift from oxido-fermentative to oxidative metabolism. At low sugar concentrations, biomass production was similar under both peptone and casamino acid supplementation. Under casamino acid supplementation, the time for metabolic shift increased with the glucose concentration, together with a decrease in the biomass production. This drastic effect on glucose fermentation resulted in the extinction of the second growth phase, probably due to the loss of cell viability. Ammonium salts always induced poor yeast performance. In general, supplementation with a nitrogen source in the peptide form (peptone) was more positive for yeast metabolism, inducing higher biomass and ethanol production, and preserving yeast viability, in both glucose and maltose media, for baking and brewing ale and lager yeast strains. Determination of amino acid utilization showed that most free and peptide amino acids present, in peptone and casamino acids, were utilized by the yeast, suggesting that the results described in this work were not due to a nutritional status induced by nitrogen limitation.