937 resultados para Probability densities
Resumo:
Apresenta·se um breve resumo histórico da evolução da amostragem por transectos lineares e desenvolve·se a sua teoria. Descrevemos a teoria de amostragem por transectos lineares, proposta por Buckland (1992), sendo apresentados os pontos mais relevantes, no que diz respeito à modelação da função de detecção. Apresentamos uma descrição do princípio CDM (Rissanen, 1978) e a sua aplicação à estimação de uma função densidade por um histograma (Kontkanen e Myllymãki, 2006), procedendo à aplicação de um exemplo prático, recorrendo a uma mistura de densidades. Procedemos à sua aplicação ao cálculo do estimador da probabilidade de detecção, no caso dos transectos lineares e desta forma estimar a densidade populacional de animais. Analisamos dois casos práticos, clássicos na amostragem por distâncias, comparando os resultados obtidos. De forma a avaliar a metodologia, simulámos vários conjuntos de observações, tendo como base o exemplo das estacas, recorrendo às funções de detecção semi-normal, taxa de risco, exponencial e uniforme com um cosseno. Os resultados foram obtidos com o programa DISTANCE (Thomas et al., in press) e um algoritmo escrito em linguagem C, cedido pelo Professor Doutor Petri Kontkanen (Departamento de Ciências da Computação, Universidade de Helsínquia). Foram desenvolvidos programas de forma a calcular intervalos de confiança recorrendo à técnica bootstrap (Efron, 1978). São discutidos os resultados finais e apresentadas sugestões de desenvolvimentos futuros. ABSTRACT; We present a brief historical note on the evolution of line transect sampling and its theoretical developments. We describe line transect sampling theory as proposed by Buckland (1992), and present the most relevant issues about modeling the detection function. We present a description of the CDM principle (Rissanen, 1978) and its application to histogram density estimation (Kontkanen and Myllymãki, 2006), with a practical example, using a mixture of densities. We proceed with the application and estimate probability of detection and animal population density in the context of line transect sampling. Two classical examples from the literature are analyzed and compared. ln order to evaluate the proposed methodology, we carry out a simulation study based on a wooden stakes example, and using as detection functions half normal, hazard rate, exponential and uniform with a cosine term. The results were obtained using program DISTANCE (Thomas et al., in press), and an algorithm written in C language, kindly offered by Professor Petri Kontkanen (Department of Computer Science, University of Helsinki). We develop some programs in order to estimate confidence intervals using the bootstrap technique (Efron, 1978). Finally, the results are presented and discussed with suggestions for future developments.
Resumo:
Matrinxa, Brycon cephalus, is a native teleost fish from the Amazon Basin, and is of economic importance for cultivation for food and sport in Brazil. Mortality losses due to handling and transport of this stenohaline freshwater species are common. The effects of transportation at different densities on the biochemical stress responses of matrinxa (mean weight 1 kg) were examined. Fish were subjected to three different transport densities (100, 200, and 300 kg m(-3)) for four h in water with added salt (0.6%). The fish were bled at departure (baseline level), arrival (immediately after transportation) and at 24 and 96 h after arrival (recovery period). Blood glucose, cortisol, sodium, chloride, potassium and ammonia were used as stress bioindicators. No mortality was observed and no alterations in plasma cortisol were registered. However, blood glucose and ammonia levels increased and serum sodium and plasma chloride decreased on arrival for the fish transported at the highest densities. These stress responses were transient and the concentrations returned to baseline levels within 24 h. This study showed that matrinxa can be transported at densities as high as those tested in the present study, at least under the conditions employed in this study. A recovery period of at least 24 h is strongly recommended.
Resumo:
The suitable operation of mobile robots when providing Ambient Assisted Living (AAL) services calls for robust object recognition capabilities. Probabilistic Graphical Models (PGMs) have become the de-facto choice in recognition systems aiming to e ciently exploit contextual relations among objects, also dealing with the uncertainty inherent to the robot workspace. However, these models can perform in an inco herent way when operating in a long-term fashion out of the laboratory, e.g. while recognizing objects in peculiar con gurations or belonging to new types. In this work we propose a recognition system that resorts to PGMs and common-sense knowledge, represented in the form of an ontology, to detect those inconsistencies and learn from them. The utilization of the ontology carries additional advantages, e.g. the possibility to verbalize the robot's knowledge. A primary demonstration of the system capabilities has been carried out with very promising results.
Resumo:
Several deterministic and probabilistic methods are used to evaluate the probability of seismically induced liquefaction of a soil. The probabilistic models usually possess some uncertainty in that model and uncertainties in the parameters used to develop that model. These model uncertainties vary from one statistical model to another. Most of the model uncertainties are epistemic, and can be addressed through appropriate knowledge of the statistical model. One such epistemic model uncertainty in evaluating liquefaction potential using a probabilistic model such as logistic regression is sampling bias. Sampling bias is the difference between the class distribution in the sample used for developing the statistical model and the true population distribution of liquefaction and non-liquefaction instances. Recent studies have shown that sampling bias can significantly affect the predicted probability using a statistical model. To address this epistemic uncertainty, a new approach was developed for evaluating the probability of seismically-induced soil liquefaction, in which a logistic regression model in combination with Hosmer-Lemeshow statistic was used. This approach was used to estimate the population (true) distribution of liquefaction to non-liquefaction instances of standard penetration test (SPT) and cone penetration test (CPT) based most updated case histories. Apart from this, other model uncertainties such as distribution of explanatory variables and significance of explanatory variables were also addressed using KS test and Wald statistic respectively. Moreover, based on estimated population distribution, logistic regression equations were proposed to calculate the probability of liquefaction for both SPT and CPT based case history. Additionally, the proposed probability curves were compared with existing probability curves based on SPT and CPT case histories.
Resumo:
Probability and Statistics were included in the Basic General Education curricula by the Ministry of Public Education (Costa Rica), since 1995. To analyze the teaching reality in these fields, a research was conducted in two educational regions of the country: Heredia and Pérez Zeledón. The survey included university training and updating processes of teachers teaching Statistics and Probability in the schools. The research demonstrated the limited university training in these fields, the dissatisfaction of teachers about it, and the poor support of training institutions to their professional exercise.
Resumo:
2016
Resumo:
Diffusion equations that use time fractional derivatives are attractive because they describe a wealth of problems involving non-Markovian Random walks. The time fractional diffusion equation (TFDE) is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α ∈ (0, 1). Developing numerical methods for solving fractional partial differential equations is a new research field and the theoretical analysis of the numerical methods associated with them is not fully developed. In this paper an explicit conservative difference approximation (ECDA) for TFDE is proposed. We give a detailed analysis for this ECDA and generate discrete models of random walk suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation. The stability and convergence of the ECDA for TFDE in a bounded domain are discussed. Finally, some numerical examples are presented to show the application of the present technique.
Resumo:
Bayesian Belief Networks (BBNs) are emerging as valuable tools for investigating complex ecological problems. In a BBN, the important variables in a problem are identified and causal relationships are represented graphically. Underpinning this is the probabilistic framework in which variables can take on a finite range of mutually exclusive states. Associated with each variable is a conditional probability table (CPT), showing the probability of a variable attaining each of its possible states conditioned on all possible combinations of it parents. Whilst the variables (nodes) are connected, the CPT attached to each node can be quantified independently. This allows each variable to be populated with the best data available, including expert opinion, simulation results or observed data. It also allows the information to be easily updated as better data become available ----- ----- This paper reports on the process of developing a BBN to better understand the initial rapid growth phase (initiation) of a marine cyanobacterium, Lyngbya majuscula, in Moreton Bay, Queensland. Anecdotal evidence suggests that Lyngbya blooms in this region have increased in severity and extent over the past decade. Lyngbya has been associated with acute dermatitis and a range of other health problems in humans. Blooms have been linked to ecosystem degradation and have also damaged commercial and recreational fisheries. However, the causes of blooms are as yet poorly understood.
Resumo:
The high degree of variability and inconsistency in cash flow study usage by property professionals demands improvement in knowledge and processes. Until recently limited research was being undertaken on the use of cash flow studies in property valuations but the growing acceptance of this approach for major investment valuations has resulted in renewed interest in this topic. Studies on valuation variations identify data accuracy, model consistency and bias as major concerns. In cash flow studies there are practical problems with the input data and the consistency of the models. This study will refer to the recent literature and identify the major factors in model inconsistency and data selection. A detailed case study will be used to examine the effects of changes in structure and inputs. The key variable inputs will be identified and proposals developed to improve the selection process for these key variables. The variables will be selected with the aid of sensitivity studies and alternative ways of quantifying the key variables explained. The paper recommends, with reservations, the use of probability profiles of the variables and the incorporation of this data in simulation exercises. The use of Monte Carlo simulation is demonstrated and the factors influencing the structure of the probability distributions of the key variables are outline. This study relates to ongoing research into functional performance of commercial property within an Australian Cooperative Research Centre.
Resumo:
The main aim of radiotherapy is to deliver a dose of radiation that is high enough to destroy the tumour cells while at the same time minimising the damage to normal healthy tissues. Clinically, this has been achieved by assigning a prescription dose to the tumour volume and a set of dose constraints on critical structures. Once an optimal treatment plan has been achieved the dosimetry is assessed using the physical parameters of dose and volume. There has been an interest in using radiobiological parameters to evaluate and predict the outcome of a treatment plan in terms of both a tumour control probability (TCP) and a normal tissue complication probability (NTCP). In this study, simple radiobiological models that are available in a commercial treatment planning system were used to compare three dimensional conformal radiotherapy treatments (3D-CRT) and intensity modulated radiotherapy (IMRT) treatments of the prostate. Initially both 3D-CRT and IMRT were planned for 2 Gy/fraction to a total dose of 60 Gy to the prostate. The sensitivity of the TCP and the NTCP to both conventional dose escalation and hypo-fractionation was investigated. The biological responses were calculated using the Källman S-model. The complication free tumour control probability (P+) is generated from the combined NTCP and TCP response values. It has been suggested that the alpha/beta ratio for prostate carcinoma cells may be lower than for most other tumour cell types. The effect of this on the modelled biological response for the different fractionation schedules was also investigated.
Resumo:
This paper explores the influence of emotional loyalty on music purchase behaviour. Specifically, it examines whether emotional attachment to an artist's music influences loyalty to that artist, and how emotional loyalty influences a consumer's decision to purchase music. Data collection involved fifteen semi-structured interviews with young (18-30) subjects recruited through non-probability convenience sampling. Findings show that consumers who are emotionally loyal to an artistes) are more inclined to purchase the music rather than download free of charge.
Error, Bias, and Long-Branch Attraction in Data for Two Chloroplast Photosystem Genes in Seed Plants
Resumo:
Sequences of two chloroplast photosystem genes, psaA and psbB, together comprising about 3,500 bp, were obtained for all five major groups of extant seed plants and several outgroups among other vascular plants. Strongly supported, but significantly conflicting, phylogenetic signals were obtained in parsimony analyses from partitions of the data into first and second codon positions versus third positions. In the former, both genes agreed on a monophyletic gymnosperms, with Gnetales closely related to certain conifers. In the latter, Gnetales are inferred to be the sister group of all other seed plants, with gymnosperms paraphyletic. None of the data supported the modern ‘‘anthophyte hypothesis,’’ which places Gnetales as the sister group of flowering plants. A series of simulation studies were undertaken to examine the error rate for parsimony inference. Three kinds of errors were examined: random error, systematic bias (both properties of finite data sets), and statistical inconsistency owing to long-branch attraction (an asymptotic property). Parsimony reconstructions were extremely biased for third-position data for psbB. Regardless of the true underlying tree, a tree in which Gnetales are sister to all other seed plants was likely to be reconstructed for these data. None of the combinations of genes or partitions permits the anthophyte tree to be reconstructed with high probability. Simulations of progressively larger data sets indicate the existence of long-branch attraction (statistical inconsistency) for third-position psbB data if either the anthophyte tree or the gymnosperm tree is correct. This is also true for the anthophyte tree using either psaA third positions or psbB first and second positions. A factor contributing to bias and inconsistency is extremely short branches at the base of the seed plant radiation, coupled with extremely high rates in Gnetales and nonseed plant outgroups. M. J. Sanderson,* M. F. Wojciechowski,*† J.-M. Hu,* T. Sher Khan,* and S. G. Brady
Resumo:
Habitat fragmentation can have an impact on a wide variety of biological processes including abundance, life history strategies, mating system, inbreeding and genetic diversity levels of individual species. Although fragmented populations have received much attention, ecological and genetic responses of species to fragmentation have still not been fully resolved. The current study investigated the ecological factors that may influence the demographic and genetic structure of the giant white-tailed rat (Uromys caudimaculatus) within fragmented tropical rainforests. It is the first study to examine relationships between food resources, vegetation attributes and Uromys demography in a quantitative manner. Giant white-tailed rat densities were strongly correlated with specific suites of food resources rather than forest structure or other factors linked to fragmentation (i.e. fragment size). Several demographic parameters including the density of resident adults and juvenile recruitment showed similar patterns. Although data were limited, high quality food resources appear to initiate breeding in female Uromys. Where data were sufficient, influx of juveniles was significantly related to the density of high quality food resources that had fallen in the previous three months. Thus, availability of high quality food resources appear to be more important than either vegetation structure or fragment size in influencing giant white-tailed rat demography. These results support the suggestion that a species’ response to fragmentation can be related to their specific habitat requirements and can vary in response to local ecological conditions. In contrast to demographic data, genetic data revealed a significant negative effect of habitat fragmentation on genetic diversity and effective population size in U. caudimaculatus. All three fragments showed lower levels of allelic richness, number of private alleles and expected heterozygosity compared with the unfragmented continuous rainforest site. Populations at all sites were significantly differentiated, suggesting restricted among population gene flow. The combined effects of reduced genetic diversity, lower effective population size and restricted gene flow suggest that long-term viability of small fragmented populations may be at risk, unless effective management is employed in the future. A diverse range of genetic reproductive behaviours and sex-biased dispersal patterns were evident within U. caudimaculatus populations. Genetic paternity analyses revealed that the major mating system in U. caudimaculatus appeared to be polygyny at sites P1, P3 and C1. Evidence of genetic monogamy, however, was also found in the three fragmented sites, and was the dominant mating system in the remaining low density, small fragment (P2). High variability in reproductive skew and reproductive success was also found but was less pronounced when only resident Uromys were considered. Male body condition predicted which males sired offspring, however, neither body condition nor heterozygosity levels were accurate predictors of the number of offspring assigned to individual males or females. Genetic spatial autocorrelation analyses provided evidence for increased philopatry among females at site P1, but increased philopatry among males at site P3. This suggests that male-biased dispersal occurs at site P1 and female-biased dispersal at site P3, implying that in addition to mating systems, Uromys may also be able to adjust their dispersal behaviour to suit local ecological conditions. This study highlights the importance of examining the mechanisms that underlie population-level responses to habitat fragmentation using a combined ecological and genetic approach. The ecological data suggested that habitat quality (i.e. high quality food resources) rather than habitat quantity (i.e. fragment size) was relatively more important in influencing giant white-tailed rat demographics, at least for the populations studied here . Conversely, genetic data showed strong evidence that Uromys populations were affected adversely by habitat fragmentation and that management of isolated populations may be required for long-term viability of populations within isolated rainforest fragments.