876 resultados para Multi objective evolutionary algorithms


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: SPARCLE is a cross-sectional survey in nine European regions, examining the relationship of the environment of children with cerebral palsy to their participation and quality of life. The objective of this report is to assess data quality, in particular heterogeneity between regions, family and item non-response and potential for bias. Methods: 1,174 children aged 8–12 years were selected from eight population-based registers of children with cerebral palsy; one further centre recruited 75 children from multiple sources. Families were visited by trained researchers who administered psychometric questionnaires. Logistic regression was used to assess factors related to family non-response and self-completion of questionnaires by children. Results: 431/1,174 (37%) families identified from registers did not respond: 146 (12%) were not traced; of the 1,028 traced families, 250 (24%) declined to participate and 35 (3%) were not approached. Families whose disabled children could walk unaided were more likely to decline to participate. 818 children entered the study of which 500 (61%) self-reported their quality of life; children with low IQ, seizures or inability to walk were less likely to self-report. There was substantial heterogeneity between regions in response rates and socio-demographic characteristics of families but not in age or gender of children. Item non-response was 2% for children and ranged from 0.4% to 5% for questionnaires completed by parents. Conclusion: While the proportion of untraced families was higher than in similar surveys, the refusal rate was comparable. To reduce bias, all analyses should allow for region, walking ability, age and socio-demographic characteristics. The 75 children in the region without a population based register are unlikely to introduce bias

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally, the Internet provides only a “best-effort” service, treating all packets going to the same destination equally. However, providing differentiated services for different users based on their quality requirements is increasingly becoming a demanding issue. For this, routers need to have the capability to distinguish and isolate traffic belonging to different flows. This ability to determine the flow each packet belongs to is called packet classification. Technology vendors are reluctant to support algorithmic solutions for classification due to their non-deterministic performance. Although CAMs are favoured by technology vendors due to their deterministic high lookup rates, they suffer from the problems of high power dissipation and high silicon cost. This paper provides a new algorithmic-architectural solution for packet classification that mixes CAMs with algorithms based on multi-level cutting the classification space into smaller spaces. The provided solution utilizes the geometrical distribution of rules in the classification space. It provides the deterministic performance of CAMs, support for dynamic updates, and added flexibility for system designers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel methodology is proposed for the development of neural network models for complex engineering systems exhibiting nonlinearity. This method performs neural network modeling by first establishing some fundamental nonlinear functions from a priori engineering knowledge, which are then constructed and coded into appropriate chromosome representations. Given a suitable fitness function, using evolutionary approaches such as genetic algorithms, a population of chromosomes evolves for a certain number of generations to finally produce a neural network model best fitting the system data. The objective is to improve the transparency of the neural networks, i.e. to produce physically meaningful

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally, the Internet provides only a “best-effort” service, treating all packets going to the same destination equally. However, providing differentiated services for different users based on their quality requirements is increasingly becoming a demanding issue. For this, routers need to have the capability to distinguish and isolate traffic belonging to different flows. This ability to determine the flow each packet belongs to is called packet classification. Technology vendors are reluctant to support algorithmic solutions for classification due to their nondeterministic performance. Although content addressable memories (CAMs) are favoured by technology vendors due to their deterministic high-lookup rates, they suffer from the problems of high-power consumption and high-silicon cost. This paper provides a new algorithmic-architectural solution for packet classification that mixes CAMs with algorithms based on multilevel cutting of the classification space into smaller spaces. The provided solution utilizes the geometrical distribution of rules in the classification space. It provides the deterministic performance of CAMs, support for dynamic updates, and added flexibility for system designers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nurse rostering is a difficult search problem with many constraints. In the literature, a number of approaches have been investigated including penalty function methods to tackle these constraints within genetic algorithm frameworks. In this paper, we investigate an extension of a previously proposed stochastic ranking method, which has demonstrated superior performance to other constraint handling techniques when tested against a set of constrained optimisation benchmark problems. An initial experiment on nurse rostering problems demonstrates that the stochastic ranking method is better in finding feasible solutions but fails to obtain good results with regard to the objective function. To improve the performance of the algorithm, we hybridise it with a recently proposed simulated annealing hyper-heuristic within a local search and genetic algorithm framework. The hybrid algorithm shows significant improvement over both the genetic algorithm with stochastic ranking and the simulated annealing hyper-heuristic alone. The hybrid algorithm also considerably outperforms the methods in the literature which have the previously best known results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Adaptability to changing circumstances is a key feature of living creatures. Understanding such adaptive processes is central to developing successful autonomous artifacts. In this paper two perspectives are brought to bear on the issue of adaptability. The first is a short term perspective which looks at adaptability in terms of the interactions between the agent and the environment. The second perspective involves a hierarchical evolutionary model which seeks to identify higher-order forms of adaptability based on the concept of adaptive meta-constructs. Task orientated and agent-centered models of adaptive processes in artifacts are considered from these two perspectives. The former isrepresented by the fitness function approach found in evolutionary learning, and the latter in terms of the concepts of empowerment and homeokinesis found in models derived from the self-organizing systems approach. A meta-construct approach to adaptability based on the identification of higher level meta-metrics is also outlined. 2009 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microsatellite genotyping is a common DNA characterization technique in population, ecological and evolutionary genetics research. Since different alleles are sized relative to internal size-standards, different laboratories must calibrate and standardize allelic designations when exchanging data. This interchange of microsatellite data can often prove problematic. Here, 16 microsatellite loci were calibrated and standardized for the Atlantic salmon, Salmo salar, across 12 laboratories. Although inconsistencies were observed, particularly due to differences between migration of DNA fragments and actual allelic size ('size shifts'), inter-laboratory calibration was successful. Standardization also allowed an assessment of the degree and partitioning of genotyping error. Notably, the global allelic error rate was reduced from 0.05 ± 0.01 prior to calibration to 0.01 ± 0.002 post-calibration. Most errors were found to occur during analysis (i.e. when size-calling alleles; the mean proportion of all errors that were analytical errors across loci was 0.58 after calibration). No evidence was found of an association between the degree of error and allelic size range of a locus, number of alleles, nor repeat type, nor was there evidence that genotyping errors were more prevalent when a laboratory analyzed samples outside of the usual geographic area they encounter. The microsatellite calibration between laboratories presented here will be especially important for genetic assignment of marine-caught Atlantic salmon, enabling analysis of marine mortality, a major factor in the observed declines of this highly valued species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unmanned surface vehicles (USVs) are able to accomplish difficult and challenging tasks both in civilian and defence sectors without endangering human lives. Their ability to work round the clock makes them well-suited for matters that demand immediate attention. These issues include but not limited to mines countermeasures, measuring the extent of an oil spill and locating the source of a chemical discharge. A number of USV programmes have emerged in the last decade for a variety of aforementioned purposes. Springer USV is one such research project highlighted in this paper. The intention herein is to report results emanating from data acquired from experiments on the Springer vessel whilst testing its advanced navigation, guidance and control (NGC) subsystems. The algorithms developed for these systems are based on soft-computing methodologies. A novel form of data fusion navigation algorithm has been developed and integrated with a modified optimal controller. Experimental results are presented and analysed for various scenarios including single and multiple waypoints tracking and fixed and time-varying reference bearings. It is demonstrated that the proposed NGC system provides promising results despite the presence of modelling uncertainty and external disturbances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To optimize the performance of wireless networks, one needs to consider the impact of key factors such as interference from hidden nodes, the capture effect, the network density and network conditions (saturated versus non-saturated). In this research, our goal is to quantify the impact of these factors and to propose effective mechanisms and algorithms for throughput guarantees in multi-hop wireless networks. For this purpose, we have developed a model that takes into account all these key factors, based on which an admission control algorithm and an end-to-end available bandwidth estimation algorithm are proposed. Given the necessary network information and traffic demands as inputs, these algorithms are able to provide predictive control via an iterative approach. Evaluations using analytical comparison with simulations as well as existing research show that the proposed model and algorithms are accurate and effective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a hardware solution for packet classification based on multi-fields is presented. The proposed scheme focuses on a new architecture based on the decomposition method. A hash circuit is used in order to reduce the memory space required for the Recursive Flow Classification (RFC) algorithm. The implementation results show that the proposed architecture achieves significant performance advantage that is comparable to that of some well-known algorithms. The solution is based on Altera Stratix III FPGA technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A genetic algorithm (GA) was adopted to optimise the response of a composite laminate subject to impact. Two different impact scenarios are presented: low-velocity impact of a slender laminated strip and high-velocity impact of a rectangular plate by a spherical impactor. In these cases, the GA's objective was to, respectively, minimise the peak deflection and minimise penetration by varying the ply angles.

The GA was coupled to a commercial finite-element (FE) package LS DYNA to perform the impact analyses. A comparison with a commercial optimisation package, LS OPT, was also made. The results showed that the GA was a robust, capable optimisation tool that produced near optimal designs, and performed well with respect to LS OPT for the more complex high-velocity impact scenario tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Potentially inappropriate prescribing in older people is common in primary care and can result in increased morbidity, adverse drug events, hospitalizations and mortality. In Ireland, 36% of those aged 70 years or over received at least one potentially inappropriate medication, with an associated expenditure of over €45 million.The main objective of this study is to determine the effectiveness and acceptability of a complex, multifaceted intervention in reducing the level of potentially inappropriate prescribing in primary care.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of a multi-band antenna consisting of a microstrip patch with two U-slots is designed and tested for use in aircraft cabin wireless access points. The objective of this paper is to evaluate this antenna that covers most of the current wireless bands from 1.7GHz to 5.85GHz.A specially designed wideband probe antenna is used for characterization
of field radiated from this antenna. This measurement setup gives room for future development like human presence in the cabin, the fading effects, and the path loss between transmitter and receiver.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrating evidence from multiple domains is useful in prioritizing disease candidate genes for subsequent testing. We ranked all known human genes (n = 3819) under linkage peaks in the Irish Study of High-Density Schizophrenia Families using three different evidence domains: 1) a meta-analysis of microarray gene expression results using the Stanley Brain collection, 2) a schizophrenia protein-protein interaction network, and 3) a systematic literature search. Each gene was assigned a domain-specific p-value and ranked after evaluating the evidence within each domain. For comparison to this
ranking process, a large-scale candidate gene hypothesis was also tested by including genes with Gene Ontology terms related to neurodevelopment. Subsequently, genotypes of 3725 SNPs in 167 genes from a custom Illumina iSelect array were used to evaluate the top ranked vs. hypothesis selected genes. Seventy-three genes were both highly ranked and involved in neurodevelopment (category 1) while 42 and 52 genes were exclusive to neurodevelopment (category 2) or highly ranked (category 3), respectively. The most significant associations were observed in genes PRKG1, PRKCE, and CNTN4 but no individual SNPs were significant after correction for multiple testing. Comparison of the approaches showed an excess of significant tests using the hypothesis-driven neurodevelopment category. Random selection of similar sized genes from two independent genome-wide association studies (GWAS) of schizophrenia showed the excess was unlikely by chance. In a further meta-analysis of three GWAS datasets, four candidate SNPs reached nominal significance. Although gene ranking using integrated sources of prior information did not enrich for significant results in the current experiment, gene selection using an a priori hypothesis (neurodevelopment) was superior to random selection. As such, further development of gene ranking strategies using more carefully selected sources of information is warranted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Processor architectures has taken a turn towards many-core processors, which integrate multiple processing cores on a single chip to increase overall performance, and there are no signs that this trend will stop in the near future. Many-core processors are harder to program than multi-core and single-core processors due to the need of writing parallel or concurrent programs with high degrees of parallelism. Moreover, many-cores have to operate in a mode of strong scaling because of memory bandwidth constraints. In strong scaling increasingly finer-grain parallelism must be extracted in order to keep all processing cores busy.

Task dataflow programming models have a high potential to simplify parallel program- ming because they alleviate the programmer from identifying precisely all inter-task de- pendences when writing programs. Instead, the task dataflow runtime system detects and enforces inter-task dependences during execution based on the description of memory each task accesses. The runtime constructs a task dataflow graph that captures all tasks and their dependences. Tasks are scheduled to execute in parallel taking into account dependences specified in the task graph.

Several papers report important overheads for task dataflow systems, which severely limits the scalability and usability of such systems. In this paper we study efficient schemes to manage task graphs and analyze their scalability. We assume a programming model that supports input, output and in/out annotations on task arguments, as well as commutative in/out and reductions. We analyze the structure of task graphs and identify versions and generations as key concepts for efficient management of task graphs. Then, we present three schemes to manage task graphs building on graph representations, hypergraphs and lists. We also consider a fourth edge-less scheme that synchronizes tasks using integers. Analysis using micro-benchmarks shows that the graph representation is not always scalable and that the edge-less scheme introduces least overhead in nearly all situations.