965 resultados para Inorganic fillers
Resumo:
Passiflora alata in vitro organogenesis was studied based on explant type, culture medium composition, and incubation conditions. The results indicated that the morphogenic process occurred more efficiently when hypocotyl segment-derived explants were cultured in media supplemented with cytokinin and AgNO(3) incubated under a 16-h photoperiod. The shoot bud elongation and plant development were obtained by transferring the material to MSM culture medium supplemented with GA(3) and incubated in flasks with vented lids. Histological analyses of the process revealed that the difficulties in obtaining plants could be related to the development of protuberances and leaf primordia structures, which did not contain shoot apical meristem. Roots developed easily by transferring elongated shoots to 1/2 MSM culture medium. Plant acclimatization occurred successfully, and somaclonal variation was not visually detected. The efficiency of this organogenesis protocol will be evaluated for genetic transformation of this species to obtain transgenic plants expressing genes that can influence the resistance to Cowpea aphid borne mosaic virus.
Resumo:
The inorganic chemical characterization of suspended sediments is of utmost relevance for the knowledge of the dynamics and movement of chemical elements in the aquatic and wet ecosystems. Despite the complexity of the effective design for studying this ecological compartment, this work has tested a procedure for analyzing suspended sediments by instrumental neutron activation analysis, k(0) method (k(0)-INAA). The chemical elements As, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, Fig, K, La, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Yb and Zn were quantified in the suspended sediment compartment by means of k(0)-INAA. When compared with World Average for rivers, high mass fractions of Fe (222,900 mg/kg), Ba (4990 mg/kg), Zn (1350 mg/kg), Cr (646 mg/kg), Co (74.5 mg/kg), Br (113 mg/kg) and Mo (31.9 mg/kg) were quantified in suspended sediments from the Piracicaba River, the Piracicamirim Stream and the Marins Stream. Results of the principal component analysis for standardized chemical element mass fractions indicated an intricate correlation among chemical elements evaluated, as a response of the contribution of natural and anthropogenic sources of chemical elements for ecosystems. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The tomato culture demands large quantities of mineral nutrients, which are supplied by synthetic fertilizers in the conventional cultivation system. In the organic cultivation system only alternative fertilizers are allowed by the certifiers and accepted as safe for humans and environment. The chemical composition of rice bran, oyster flour, cattle manure and ground charcoal, as well as soils and tomato fruits were evaluated by instrumental neutron activation analysis (INAA). The potential contribution of organic fertilizers to the enrichment of chemical elements in soil and their transfer to fruits was investigated using concentration ratios for fertilizer and soil samples, and also for soil and tomato. Results evidenced that these alternative fertilizers could be taken as important sources of Br, Ca, Ce, K, Na and Zn for the organic tomato culture.
Resumo:
Studies concerning the accumulating capacity of native epiphytic bromeliads are of utmost relevance, due to the continuous incorporation of chemical elements provided by these organisms in the ecosystems. Bromeliad species from diverse So Paulo State conservation units, Brazil, were sampled for young, mature and old leaves using a sustainable sampling method. By applying INAA, the accumulation of ten chemical elements, i.e. Br, Ca, Co, Fe, K, Na, Rb, Sc, Sr and Zn, was investigated in different leaf vegetative stages. The bromeliads showed divergent chemical element distribution patterns, demonstrating a real complexity in the accumulation and translocation mechanisms utilized by these plants.
Resumo:
Soil as an impurity in sugarcane is a serious problem for the ethanol industry, increasing production and maintenance costs and reducing the productivity. Fe, Hf, Sc and Th determined by INAA were used as tracers to assess the amount of soil in sugarcane from truckloads as well as in the juice extraction process. Quality control tools were applied to results identifying the need for stratification according to soil type and moisture. Soil levels of truckloads had high variability indicating potential for improving cut and loading operations. Samples from the juice extraction process allowed tracking the soil in the mill tandem.
Resumo:
For environmental quality assessment, INAA has been applied for determining chemical elements in small (200 mg) and large (200 g) samples of leaves from 200 trees. By applying the Ingamells` constant, the expected percent standard deviation was estimated in 0.9-2.2% for 200 mg samples. Otherwise, for composite samples (200 g), expected standard deviation varied from 0.5 to 10% in spite of analytical uncertainties ranging from 2 to 30%. Results thereby suggested the expression of the degree of representativeness as a source of uncertainty, contributing for increasing of the reliability of environmental studies mainly in the case of composite samples.
Resumo:
Phosphoric acid is generally obtained from an aqueous process starting with the reaction between phosphate rock and sulphuric acid. Due to their chemical similarity, uranium is usually associated with phosphate rock which during chemical processing is partitioned to phosphoric acid. Uranium determination in this matrix is a very important task because of its ingestion it could lead to radiological impact on the population. Therefore, a procedure was developed using an initial precipitation with calcium hydroxide and evaporation, followed by instrumental neutron activation analysis (INAA). The procedure was applied to analyse fourteen uranium enriched phosphoric acid samples.
Resumo:
The performance of laser-induced breakdown spectrometry (LIBS) for the determination of Ba, Cd, Cr and Pb in toys has been evaluated by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with intensified charge-coupled device detector. Samples were purchased in different cities of Sao Paulo State market and analyzed directly without sample preparation. Laser-induced breakdown spectrometry experimental conditions (number of pulses, delay time. integration time gate and pulse energy) were optimized by using a Doehlert design. Laser-induced breakdown spectrometry signals correlated reasonably well with inductively coupled plasma optical emission spectrometry (ICP OES) concentrations after microwave-assisted acid digestion of selected samples. Thermal analysis was used for polymer identification and scanning electron microscopy to Visualize differences in crater geometry of different polymers employed for toy fabrication. Results indicate that laser-induced breakdown spectrometry can be proposed as a rapid screening method for investigation of potentially toxic elements in toys. The unique application of laser-induced breakdown spectrometry for identification of contaminants in successive layers of ink and polymer is also demonstrated. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The Zr-Au set for monitoring the thermal and epithermal neutron fluence rate and the epithermal spectrum parameter a is not always practicable for routine application of INAA in well-thermalized facilities. An alternative set consisting of Cr, Au and Mo provides values for the thermal neutron fluence rate, f and alpha that are not significantly different from those found via the Zr-Au method and the Cd-covered Zr-method. The IRMM standard SMELS-II was analyzed using the (Au-Cr-Mo) monitor and a good agreement was obtained. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Selenium detection limits of INAA are normally above its concentration in most biological materials. Gamma-gamma coincidence methodology can be used to improve the detection limits and uncertainties in the determination of selenium. Here, some edible parts of plants were measured using a HPGe detector equipped with a NaI(Tl) active shielding, producing spectra both in normal and coincidence modes. The results presented the reduction of the detection limits of selenium by a factor of 2 to 3 times and improvement in the uncertainty of up to 2 times.
Resumo:
The degree of homogeneity is normally assessed by the variability of the results of independent analyses of several (e.g., 15) normal-scale replicates. Large sample instrumental neutron activation analysis (LS-INAA) with a collimated Ge detector allows inspecting the degree of homogeneity of the initial batch material, using a kilogram-size sample. The test is based on the spatial distributions of induced radioactivity. Such test was applied to samples of Brazilian whole (green) coffee beans (Coffea arabica and Coffea canephora) of approximately I kg in the frame of development of a coffee reference material. Results indicated that the material do not contain significant element composition inhomogeneities between batches of approximately 30-50 g, masses typically forming the starting base of a reference material.
Resumo:
Epiphytic bromeliads have been used as biomonitors of air pollution since they have specialized structures in leaves for absorbing humidity and nutrients available in the atmosphere. Leaves of five bromeliad species were collected in the conservation unit Parque Estadual Ilha do Cardoso, Sao Paulo State, Brazil, and analyzed by INAA. Vriesea carinata was the species showing most accumulation, with the highest mass fractions of K, Na, Rb and Zn. Similar results were previously found for the same species collected in the dense ombrophilous forest. Chemical composition of bromeliads provided an indication of the atmosphere status in the conservation unit.
Resumo:
Environmental quality assessment studies have been conducted with tree species largely distributed in the Atlantic Forest. Leaf and soil samples were collected in the conservation unit Parque Estadual da Serra do Mar (PESM) nearby the industrial complex of Cubatao, Sao Paulo State, Brazil, and analyzed for chemical elements by instrumental neutron activation analysis. Results were compared to background values obtained in the Parque Estadual Carlos Botelho (PECB). The higher As, Fe, Hg and Zn mass fractions in the tree leaves of PESM indicated anthropogenic influence on this conservation unit.
Resumo:
The agricultural supplies used in the organic system to control pests and diseases as well as to fertilize soil are claimed to be beneficial to plants and innocuous to human health and to the environment. The chemical composition of six agricultural supplies commonly used in the organic tomato culture, was evaluated by instrumental neutron activation analysis (INAA). Results were compared to the maximum limits established by the Environment Control Agency of the Sao Paulo State (CETESB) and the Guidelines for Organic Quality Standard of Instituto Biodinamico (IBD). Concentrations above reference values were found for Co, Cr and Zn in compost, Cr and Zn in cattle manure and Zn in rice bran.
Resumo:
The citrus variegated chlorosis (CVC) disease results in serious economical losses for the Brazilian citriculture. The influence of CVC disease on the elemental composition of citrus plants was investigated. Leaves of sweet orange varieties Hamlin, Pera Rio and Valencia were collected from healthy and CVC-affected trees for chemical characterization by instrumental neutron activation analysis (INAA). Significant differences between healthy and CVC-affected leaves were identified for Ca, Ce, Co, Eu, Fe, K, La, Na, Nd, Rb, Sc and Sm. Rare earth elements presented consistently higher mass fractions in the healthy leaves.