887 resultados para Humanoid Robot
Resumo:
A coverage algorithm is an algorithm that deploys a strategy as to how to cover all points in terms of a given area using some set of sensors. In the past decades a lot of research has gone into development of coverage algorithms. Initially, the focus was coverage of structured and semi-structured indoor areas, but with time and development of better sensors and introduction of GPS, the focus has turned to outdoor coverage. Due to the unstructured nature of an outdoor environment, covering an outdoor area with all its obstacles and simultaneously performing reliable localization is a difficult task. In this paper, two path planning algorithms suitable for solving outdoor coverage tasks are introduced. The algorithms take into account the kinematic constraints of an under-actuated car-like vehicle, minimize trajectory curvatures, and dynamically avoid detected obstacles in the vicinity, all in real-time. We demonstrate the performance of the coverage algorithm in the field by achieving 95% coverage using an autonomous tractor mower without the aid of any absolute localization system or constraints on the physical boundaries of the area.
Resumo:
This paper describes a lightweight, modular and energy efficient robotic vehicle platform designed for broadacre agriculture - the Small Robotic Farm Vehicle (SRFV). The current trend in farming is towards increasingly large machines that optimise the individual farmer’s productivity. Instead, the SRFV is designed to promote the sustainable intensification of agriculture by allowing farmers to concentrate on more important farm management tasks. The robot has been designed with a user-centred approach which focuses the outcomes of the project on the needs of the key project stakeholders. In this way user and environmental considerations for broadacre farming have informed the vehicle platform configuration, locomotion, power requirements and chassis construction. The resultant design is a lightweight, modular four-wheeled differential steer vehicle incorporating custom twin in-hub electric drives with emergency brakes. The vehicle is designed for a balance between low soil impact, stability, energy efficiency and traction. The paper includes modelling of the robot’s dynamics during an emergency brake in order to determine the potential for tipping. The vehicle is powered by a selection of energy sources including rechargeable lithium batteries and petrol-electric generators.
Resumo:
One of the main challenges facing online and offline path planners is the uncertainty in the magnitude and direction of the environmental energy because it is dynamic, changeable with time, and hard to forecast. This thesis develops an artificial intelligence for a mobile robot to learn from historical or forecasted data of environmental energy available in the area of interest which will help for a persistence monitoring under uncertainty using the developed algorithm.
Resumo:
This paper presents an enhanced algorithm for matching laser scan maps using histogram correlations. The histogram representation effectively summarizes a map's salient features such that pairs of maps can be matched efficiently without any prior guess as to their alignment. The histogram matching algorithm has been enhanced in order to work well in outdoor unstructured environments by using entropy metrics, weighted histograms and proper thresholding of quality metrics. Thus our large-scale scan-matching SLAM implementation has a vastly improved ability to close large loops in real-time even when odometry is not available. Our experimental results have demonstrated a successful mapping of the largest area ever mapped to date using only a single laser scanner. We also demonstrate our ability to solve the lost robot problem by localizing a robot to a previously built map without any prior initialization.
Resumo:
This paper reports work on the automation of a hot metal carrier, which is a 20 tonne forklift-type vehicle used to move molten metal in aluminium smelters. To achieve efficient vehicle operation, issues of autonomous navigation and materials handling must be addressed. We present our complete system and experiments demonstrating reliable operation. One of the most significant experiments was five-hours of continuous operation where the vehicle travelled over 8 km and conducted 60 load handling operations. Finally, an experiment where the vehicle and autonomous operation were supervised from the other side of the world via a satellite phone network are described.
Resumo:
Changing environments pose a serious problem to current robotic systems aiming at long term operation under varying seasons or local weather conditions. This paper is built on our previous work where we propose to learn to predict the changes in an environment. Our key insight is that the occurring scene changes are in part systematic, repeatable and therefore predictable. The goal of our work is to support existing approaches to place recognition by learning how the visual appearance of an environment changes over time and by using this learned knowledge to predict its appearance under different environmental conditions. We describe the general idea of appearance change prediction (ACP) and investigate properties of our novel implementation based on vocabularies of superpixels (SP-ACP). Our previous work showed that the proposed approach significantly improves the performance of SeqSLAM and BRIEF-Gist for place recognition on a subset of the Nordland dataset under extremely different environmental conditions in summer and winter. This paper deepens the understanding of the proposed SP-ACP system and evaluates the influence of its parameters. We present the results of a large-scale experiment on the complete 10 h Nordland dataset and appearance change predictions between different combinations of seasons.
Resumo:
In 2013, ten teams from German universities and research institutes participated in a national robot competition called SpaceBot Cup organized by the DLR Space Administration. The robots had one hour to autonomously explore and map a challenging Mars-like environment, find, transport, and manipulate two objects, and navigate back to the landing site. Localization without GPS in an unstructured environment was a major issue as was mobile manipulation and very restricted communication. This paper describes our system of two rovers operating on the ground plus a quadrotor UAV simulating an observing orbiting satellite. We relied on ROS (robot operating system) as the software infrastructure and describe the main ROS components utilized in performing the tasks. Despite (or because of) faults, communication loss and breakdowns, it was a valuable experience with many lessons learned.
Resumo:
Directed by Alex Proyas, the Knowing is an action-packed science-fiction disaster movie. A well-known Australian director working in Hollywood, Proyas has developed an international reputation for stylised fantasy and science-fiction movies, including the neo-gothic movie The Crow (1994), the complex science-fiction film Dark City (1998), and the adaptation of Isaac Asimov’s sci-fi classic I, Robot (2004) which earned almost US$350 million theatrically worldwide. Knowing was produced for US$50 million and relies heavily upon special effects (including a visually impressive sequence of the world being destroyed) and high-octane action sequences (including a notable plane crash). Knowing’s cast included Australian actors, Rose Byrne and Ben Mendelsohn, and American actor Nicolas Cage. While Knowing received typically poor critical reviews, the movie performed well at the box-office earning over US$183 million worldwide.
Resumo:
This paper reports work involved with the automation of a Hot Metal Carrier — a 20 tonne forklift-type vehicle used to move molten metal in aluminium smelters. To achieve efficient vehicle operation, issues of autonomous navigation and materials handling must be addressed. We present our complete system and experiments demontrating reliable operation. One of the most significant experiments was five-hours of continuous operation where the vehicle travelled over 8 km and conducted 60 load handling operations. We also describe an experiment where the vehicle and autonomous operation were supervised from the other side of the world via a satellite phone network.
Resumo:
Using cameras onboard a robot for detecting a coloured stationary target outdoors is a difficult task. Apart from the complexity of separating the target from the background scenery over different ranges, there are also the inconsistencies with direct and reflected illumination from the sun,clouds, moving and stationary objects. They can vary both the illumination on the target and its colour as perceived by the camera. In this paper, we analyse the effect of environment conditions, range to target, camera settings and image processing on the reported colours of various targets. The analysis indicates the colour space and camera configuration that provide the most consistent colour values over varying environment conditions and ranges. This information is used to develop a detection system that provides range and bearing to detected targets. The system is evaluated over various lighting conditions from bright sunlight, shadows and overcast days and demonstrates robust performance. The accuracy of the system is compared against a laser beacon detector with preliminary results indicating it to be a valuable asset for long-range coloured target detection.
Resumo:
This paper describes a series of trials that were done at an underground mine in New South Wales, Australia. Experimental results are presented from the data obtained during the field trials and suitable sensor suites for an autonomous mining vehicle navigation system are evaluated.
Resumo:
The mining industry is highly suitable for the application of robotics and automation technology since the work is both arduous and dangerous. However, while the industry makes extensive use of mechanisation it has shown a slow uptake of automation. A major cause of this is the complexity of the task, and the limitations of existing automation technology which is predicated on a structured and time invariant working environment. Here we discuss the topic of mining automation from a robotics and computer vision perspective — as a problem in sensor based robot control, an issue which the robotics community has been studying for nearly two decades. We then describe two of our current mining automation projects to demonstrate what is possible for both open-pit and underground mining operations.
Resumo:
Details the developments to date of an unmanned air vehicle (UAV) based on a standard size 60 model helicopter. The design goal is to have the helicopter achieve stable hover with the aid of an INS and stereo vision. The focus of the paper is on the development of an artificial neural network (ANN) that makes use of only the INS data to generate hover commands, which are used to directly manipulate the flight servos. Current results show that networks incorporating some form of recurrency (state history) offer little advantage over those without. At this stage, the ANN has partially maintained periods of hover even with misaligned sensors.
Resumo:
This paper describes a software architecture for real-world robotic applications. We discuss issues of software reliability, testing and realistic off-line simulation that allows the majority of the automation system to be tested off-line in the laboratory before deployment in the field. A recent project, the automation of a very large mining machine is used to illustrate the discussion.
Resumo:
This paper discusses some of the sensing technologies available for guiding robot manipulators for a class of underground mining tasks including drilling jumbos, bolting arms, shotcreters or explosive chargers. Data acquired with such sensors, in the laboratory and underground, is presented.